

Mathematically modelling the induction of xenobioticmetabolising and transporter enzymes

Mohammed I. Atari, Paul D. Metcalfe and Simon Thomas Scientific Computing Group Cyprotex Discovery Ltd.

Presentation outline

Introduction

Background biology

- Nuclear receptors
- € Cytochrome P450
- Drug transporters

Mathematical model

- CYP3A4 induction by phenobarbital
- Gene expression data
- Parameter estimation
- Sensitivity analysis
- Model validation
 - CYP induction
- Linking in vitro results to in vivo outcomes

Conclusions

© 2010 Cyprotex

the ADME Tox specialists **Security**

Introduction

Motivation

- Living organisms are exposed to numerous foreign and endogenous substances (including drugs and environmental chemicals)
- Some of these compounds can bind to receptors in the liver and other organs leading to changes in enzyme expression
- Changes in transporters and drug-metabolising enzymes are a well-studied system, and are important in drug discovery

Objective

Investigate the effect of typical nuclear receptor activators on the induction of proteins that govern xenobiotic metabolism and disposition in human liver

Method

- Developed a novel mathematical model for the *in vitro* kinetics of xenobiotics
- The model describes the expression of cytochrome P450 isoforms and ATP-binding cassette transporters in response to different activators
- Gene expression time-series data from primary human hepatocytes (parameter estimation and model validation)

- Xenobiotic-metabolising enzymes and transporter (uptake & efflux) proteins play crucial roles in the metabolism and disposition of xenobiotics
- Metabolism of xenobiotics can result in detoxification and/or toxification (by forming toxic metabolites)
- Transport can either remove chemicals from the body or cause increased chemical concentration in certain tissues (potentially increasing toxic effects)
- The expression of xenobiotic-metabolising enzymes and transporters is upregulated by a group ligand-activated transcription factors known as the nuclear receptors (NRs)
- Xenobiotics can alter the transcription of a broad array of genes expressed in tissues and vital organs including the liver, kidney, intestine and pancreas
- The structural features of NRs include a highly-conserved DNA-binding domain (DBD) and a less conserved ligand-binding domain (LBD)

- The majority of known ligands for orphan receptors are xenobiotics including:
 - 🔮 Drugs
 - Industrial chemicals
 - Environmental pollutants
 - Food additives
- Pregnane X receptor (PXR; NR1I2), an orphan receptor, is one of the beststudied NRs which mediates the induction of cytochrome P450 (CYP) and ABC genes
- The superfamily of CYP enzymes has a pivotal role in the metabolism of xenobiotics
- The highest expression levels of CYPs is found in the liver, however, certain CYPs are present in the wall cells of the intestine, and elsewhere

Distribution of CYP isoforms

CYP3 (31%)
CYP2C11 (16%)
CYP2E1 (13%)
CYP2C6 (6%)
CYP1A6 (8%)
CYP1A2 (13%)
CYP2A6 (4%)
CYP2D6 (2%)
Other (7%)

the ADME Tox specialists Second

Relative contributions of CYP isoforms to metabolism of drugs

General mechanism of induction

Hepatocyte

the ADME Tox specialists & cyprotex

the ADME Tox specialists Second

Variability in response to xenobiotics

Mathematical model

the ADME Tox specialists Second

Experimental data

(Data taken from P. Martin et al., Br. J. Pharmacol., Vol. 153, 2008, pp. 805-819)

Experimental data

(Data taken from P. Martin et al., Br. J. Pharmacol., Vol. 153, 2008, pp. 805-819)

© 2010 Cyprotex

the ADME Tox specialists Second

Parameter estimation

© 2010 Cyprotex

Parameter estimation

© 2010 Cyprotex

Sensitivity analysis

© 2010 Cyprotex

the ADME Tox specialists Second

Sensitivity analysis

© 2010 Cyprotex

the ADME Tox specialists Second

Sensitivity analysis

© 2010 Cyprote×

© 2010 Cyprotex

Positive control induction of CYP1A2 (omeprazole), CYP2B6 (phenobarbital) and CYP3A4 (rifampicin)

the ADME Tox specialists Groprotex

© 2010 Cyprote>

the ADME Tox specialists Second

Parameter increase by 3 fold	Fold over base model
PXR resting protein concentration	2.2
CYP3A4 resting protein concentration	1.5
Drug permeability	0.3
Induced drug metabolism rate	0.5

Linking in vitro results to in vivo outcomes

- Predictive models for *in vivo* toxicity require predictive modelling of exposure
- Our ultimate aim is to predict the *in vivo* outcome by linking the hepatocyte model to a whole body model
- Physiologically-based pharmacokinetic (PBPK) models satisfy these requirements.
- PBPK models can predict exposure of hepatocytes in vivo for various external exposure scenarios

Linking in vitro results to in vivo outcomes

- PBPK models predict the fates of compounds in the body
- PBPK models are mathematical simulation models.
- They are devised to predict the fate(s) of compound(s) in the bodies of humans, and other animals.
- Their primary output is the change over time following dosing of relevant quantities. e.g. the concentration of a compound in the plasma and other tissues.
- Simple physchem and *in vitro* ADME data can be used as inputs.

© 2010 Cyprotex

PBPK models inputs* for screening in drug discovery

Input Property

Hepatic microsomal intrinsic clearance (species-dependent)

Fraction unbound in plasma (species-dependent)

Blood:plasma ratio (speciesdependent)

pKa(s)

logP octanol/water

Caco-2 permeability

Solubility (buffered)

Prediction of i.v. dose, p.o. dose exposure

*Cloe[®] PK V2.1

© 2010 Cyprotex

Conclusions

- Xenobiotic-metabolising enzymes and transporter (uptake & efflux) proteins play crucial roles in the metabolism and disposition of chemical compounds
- Many xenobiotics affect enzyme induction in liver and other organs
- Hepatic induction of CYP450 isoforms is probably the beststudied facet of this response
- ♦ A model of PXR and CYP3A4 in hepatocytes quantitatively predicts the response to dexamethasone (DMSO) in vitro
- In vivo response should be predictable by incorporating cellular model into a PBPK model

