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ABSTRACT

Sets of about 2000 toxic and 70000 non-toxic
peptides 8 to 70 amino acid long were se-
lected from the Uniprot[1] database, and used
for training and performance tests of several
machine learning methods.

Two variants of logistic regression[2] models,
a multilayer perceptron[3] (MLP) neural net-
work, and two variants of classification tree[4]
models were tested. In these tests, best perfor-
mance was obtained for the neural network
model; however, authors suggest that this ap-

proach is less attractive for practical applica-
tion because of the problem with biochemical
interpretation of the obtained rules. This issue
is often observed for applications of the neural
network methodology. As the best compromise
between classification performance and inter-
pretability, authors propose the logistic regres-
sion model with interactions.

This work was partially supported by a grant
from PEPLASER[5] collaborative project
(FP7-HEALTH-2007-B)

FEATURE EXTRACTION
The peptide sequences were processed using
MEME[6] and SeqCode[7] programs to identify
relevant motifs. Reversibility of sequence pat-
terns was assumed (ABCD=DCBA). The pres-
ence of a motif in a given sequence was binary
coded.
529 motifs were identified and divided
into 4 subsets based on the sequence length.
len ∈ {[8, 37), [37, 44), [44, 60), [60, 70]}
For the modelling process 57 motifs were se-
lected based on the frequency of observation.

ASSOCIATION RULES
Association rules analysis was performed
for the complete feature set. Most of the mo-
tifs associated with toxicity contain cysteine
and/or CC dipeptide.
Most prominent rules of the toxic classification
are: presence of CC, presence of ILLLL.

41% of sequences with CC are toxic.
3% of all sequences are toxic.

Conversely, several sequence motifs with
no observed toxicity were identified: WYH,
HWH, AELG, TYQ, KPSV. Motifs KR, RF and
FK are frequently observed in the nontoxic
class.

PEPTIDE TOXICITY MODELS
logit 1 - a logit model with all relevant variables
logit 2 - a logit model with selected variables and interac-

tions
MLP - a multilayer 61-5-1 perceptron neural network with

logistic activation functions
tree 1 - a binary decision tree model
tree 2 - a binary decision tree with 50× increased False

Negative decision cost

model TPR TNR FPR FNR ACC MCC
logit 1 0.547 0.996 0.004 0.453 0.876 0.598
logit 2 0.566 0.996 0.004 0.434 0.985 0.672
MLP 0.645 0.995 0.005 0.355 0.986 0.707
tree 1 0.461 0.955 0.005 0.539 0.981 0.560
tree 2 0.623 0.755 0.245 0.377 0.759 0.236

CONCLUSION

The results show noticeable relation between
peptide toxicity, as defined in the UniProt
database, and the presence of single and dou-
ble cysteine motifs. In all the tested models this
relation is one of the most relevant classification
factors.
Among all the models, the Multilayer Percep-

tron model is the most precise; however, it is less
preferred because of the problems with bio-
chemical interpretation of the results.
Authors suggest the Logit model with interac-
tions as the best compromise between perfor-
macne and interpretability.

RESULTS

The association rules show that the cysteine-cysteine motif coincides with 15× increased probability
of peptide toxicity. This motif is present in 58% of the toxic peptides, while 41% of all peptides
containing the CC motif are toxic.
The observed toxicity of cysteine containing peptides may result from high neurotoxicity
of this aminoacid[8].
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ROC curve for the Multilayer Perceptron
model with 61 inputs, 5 neurons in the
input layer, and 1 in the hidden layer.
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ROC curve for the Logit model with inter-
actions.
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ROC curve for the Decision Tree model with
50× increased penalty for classifing a toxic
peptide as nontoxic.

The Multilayer Perceptron model gives the most precise results, but it is diffi-
cult to explain the underlying biochemical properties that cause toxicity. The Logit
model with interactions is the second best model. It classifies 56.6% of toxic pep-
tides correctly with only 0.4% nontoxic peptides wrongly classified as toxic.
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