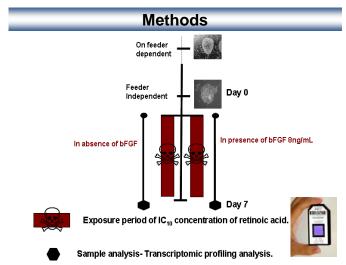
In vitro embryotoxicity testing with human embryonic stem cells reveals markers for all-trans-retinoic acid

Smita Jagtap, Kesavan Meganathan, Vilas Wagh, John Antonydas Gaspar,


Jürgen Hescheler and Agapios Sachinidis

Center of Physiology and Pathophysiology, Institute of Neurophysiology, Robert-Koch-Strasse 39, 50931 Cologne, Germany.

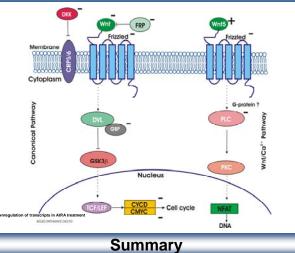
esnats

Abstract

Many characteristics of human embryonic stem cells (hESCs) including pluripotency are useful tools for studying the harmful effects of reference compounds during early development. The early embryogenesis is recapitulated by pluripotent embryonic stem cells when differentiated in vitro, which makes hESC an effective tool for developmental toxicology and embryotoxicology. All-trans-retinoic acid is known to be embryotoxic in laboratory animals and for humans when applied during critical stages of embryonic development. Characteristic malformation patterning of craniofacial structures and defects in cardiac development were observed in human offsprings. In rat and mice, All-transretinoic acid treatment resulted in craniofacial malformations and limb anomalies associated with embryo fetal alterations. In the following study, All-trans-retinoic acid (AtRA) was treated on undifferentiated hESC in the presence and absence of bFGF for a period of 7 days and a toxicogenomics profile was studied. The results revealed that mesoderm markers such as BMP2, COL1A1 and COL2A1, endoderm markers such as AFP, GATA4 and SERPINA1 were dysregulated. Ectodermal markers such as NEUROD1, PAX6 and TUBB3 were dysregulated in the presence or absence of bGFG. The results are further used to identify embryotoxic markers and also to test other compounds for embryotoxic potential.

Global cluster for All trans Retinoic acid

ArRA without bFGF


Pathways in All trans Retinoic acid

Log Fold change ± 1 P ≤ 0.01	AtRA With bFGF	AtRA Without bFGF No significant pathways Melanogenesis PPAR signaling				
Upregulated	Pathways in Cancer					
Downregulated	No significant pathways					
Common pathways Upregulated Axon Guidance						
Upregulated		h pathways				

Gene Ontology for All trans Retinoic acid

	AtRA with bFGF			AtRA without bFGF		
	Biological process	gene count	p Value	Biological process	gene count	p Value
	GD:0060173~limb development	16	1.54E-08	G0:0044057~regulation of system process	9	6.04E-04
	GO.0048736-appendage development	16	1.54E-08	G0:0042391~regulation of membrane potential	6	0.001384517
	GO:0035108-limb morphogenesis	15	6.87E-08	GO:0008284~positive regulation of cell proliferation	9	0.00382602
τ	GO:0048598-embryonic morphogenesis	25	2.35E-07	G0:0051240-positive regulation of multicellular organismal process	7	0.00384147
ato	GO:0001501~skeletal system development	25	4.69E-07	GO:0048878-chemical homeostasis	10	0.00406018
10	GO:0035295-tube development	19	4.16E-06	GO:0042445~hormone metabolic process	5	0.004072675
upreg	GO.0030182-neuron differentiation	25	9.87E-05	GD:0051960-regulation of nervous system development	6	0.00649532
	GO:0007411~axon guidance	11	1.99E-04	GO.0006873-cellular ion homeostasis	8	0.008008513
wnregulated	GO:0001944~vasculature development	16	1.99E-05	GO:0000902-cell morphogenesis	19	8.06E-06
	GO:0001568-blood vessel development	14	2.34E-04	GO:0060284-regulation of cell development	14	4.50E-07
	GO.0002040-sprouting angiogenesis	4	3.54E-04	GO:0060485-mesenchyme development	8	1.58E-06
	G0:0043405-regulation of MAP kinase activity	9	0.002465	GO:0060485-mesenchyme development	8	1.58E-06
	GO:0043549-regulation of kinase activity	15	0.002633	GO.0050767~regulation of neurogenesis	12	2.33E-06
	GO:0048514-blood vessel morphogenesis	11	0.002821	GO:0001569-patterning of blood vessels	5	7.50E-05
op	GO:0000165-MAPI44K cascade	10	0.00368	GC:0060348~bore development	8	4.35E-04

 All trans retinoic acid tends to dysregulated the pluripotent state of hESC irrespective of exogenous bFGF.

2. Wnf signaling elicits multiple functions in stem cells, regulating not only promotion of proliferation, but also lineage selection. Any dysregulation in WNT signaling in response to embryo-toxicants may alter crucial developmental process.

 ARA was found to cause alteration WNT signaling, which can be further exploited for other embryo-toxicant testing

4. Although how signaling pathways interact with canonical WNT signaling remains to be elucidated, we can consider WNT as an important signaling pathway in embryotoxicity studies.