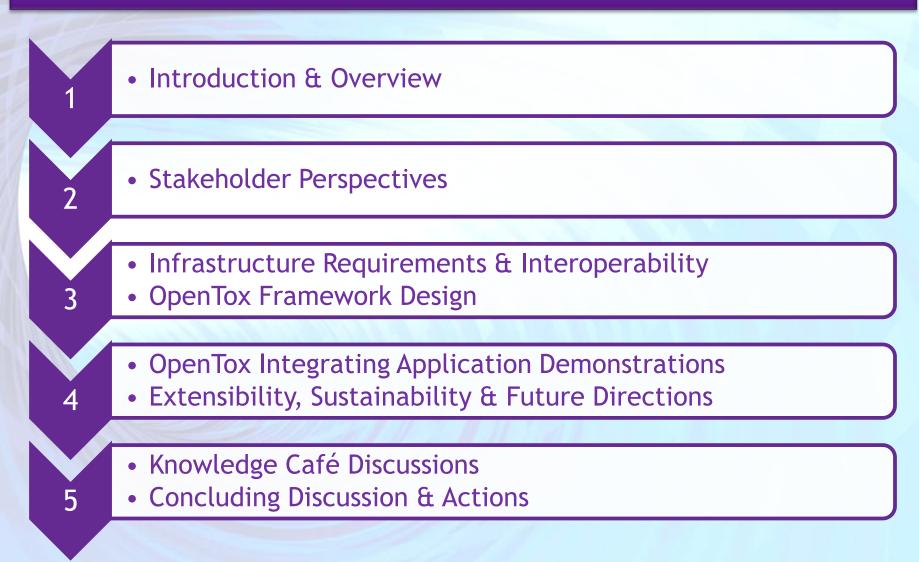
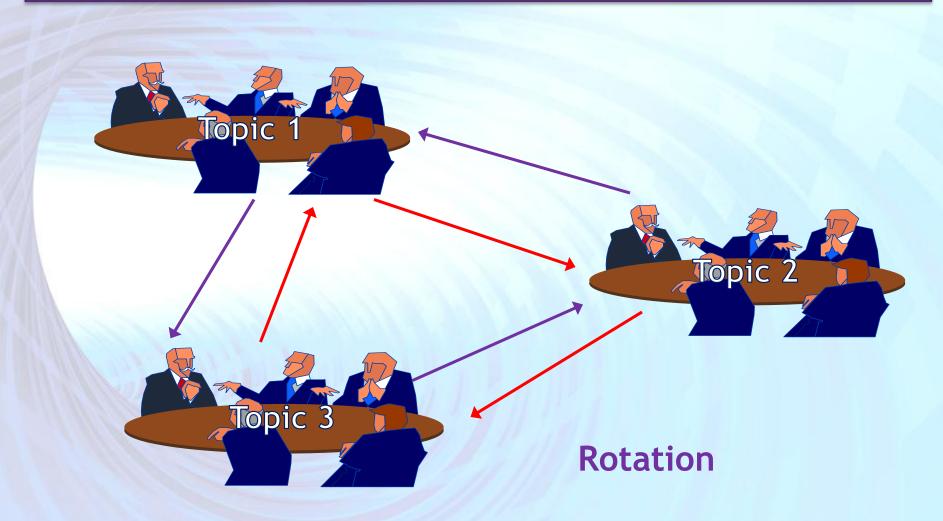
Integrating Predictive Toxicology Applications & Resources

An OpenTox Workshop 30 May, 2010 Potsdam, Germany


Workshop Overview

Barry Hardy Douglas Connect OpenTox Project Coordinator


Workshop Overview

Knowledge Café Discussion Format

Development of Strategies for Interoperable Resources & Applications in Predictive Toxicology

Eliminate traditional circus acts, animals

CIRQUE DU SOLEIL

Create theatrical themes, storylines, new acts Blue Ocean Reduce dangerous acts, traditional humour, transport costs

Based on Blue Ocean Strategy, Kim & Mauborne 2006

Raise tent standards, artistic sophistication, ticket prices!

Perspectives

Robert Kavlock (EPA, US) Carl Westmoreland (Unilever, UK) Emilio Benfenati (Mario Negri Institute, Italy) Egon Willighagen (Uppsala University, Sweden) Jeffrey Wiseman (Pharmatrope, US) Michael Schwarz (University of Tuebingen, Germany)

Requirements in Predictive Toxicology Infrastructure

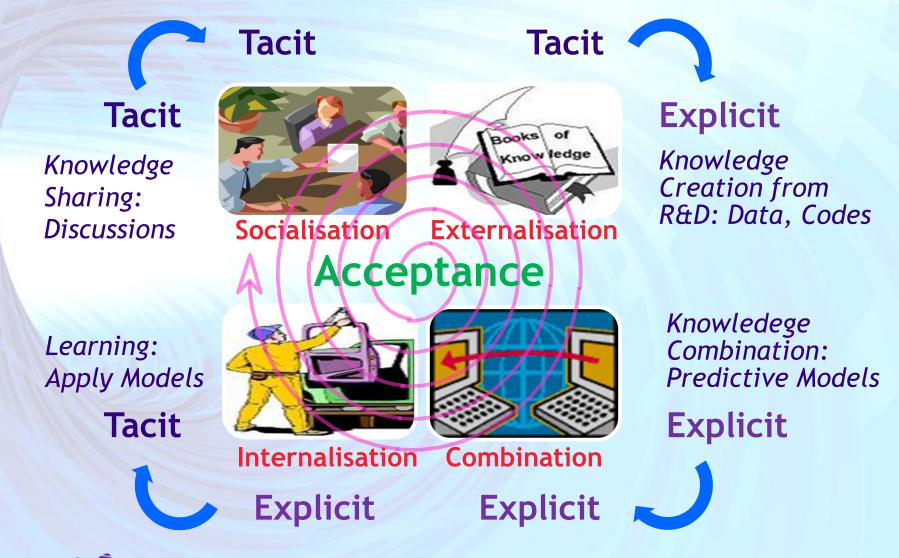
Barry Hardy

Douglas Connect OpenTox Project Coordinator

Need for communications in the community overcoming different languages and vocabularies

Explaining the rules of different games on a conservation project trip in the Caprivi, Namibia

From Conservation Project Trip in Caprivi Delta


So now I have

explained our

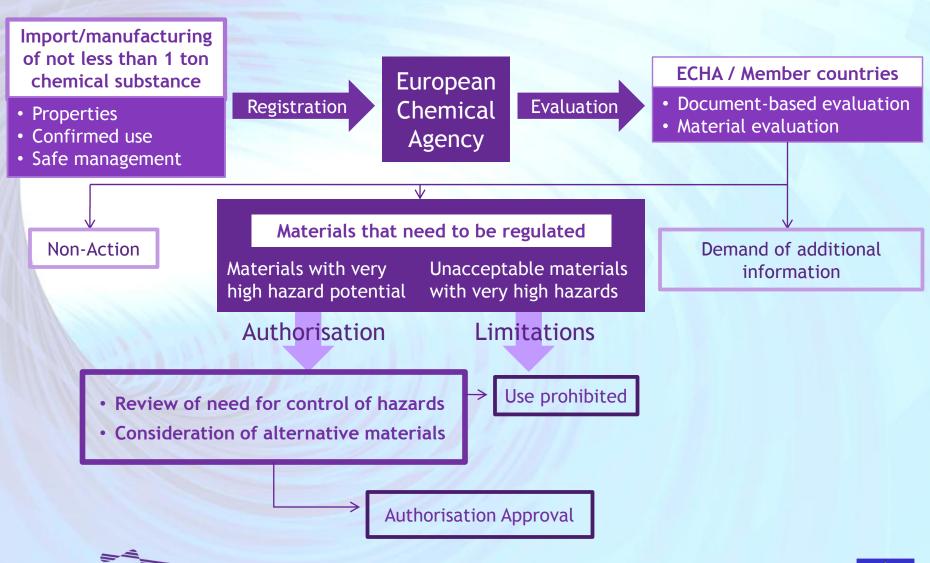
game, how does

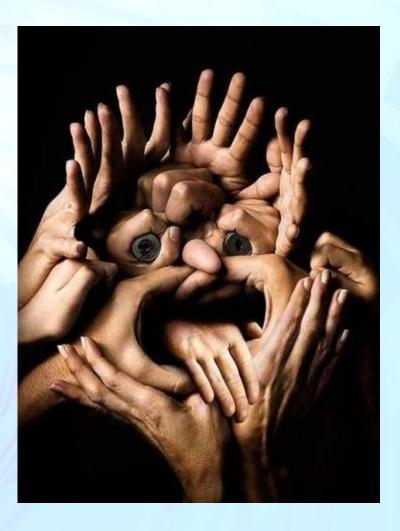
yours work?

SECI Model for Knowledge Management



Based on Nonaka & Takeuchi, The Knowledge Creating Company, 1995


REACH


REACH Registration

What is our situation today when we say ...

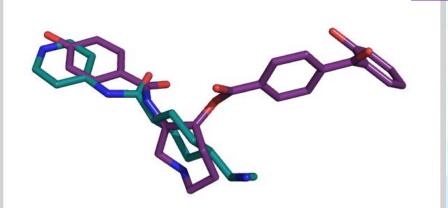
Let's build an integrated predictive toxicology application!

Let's collaborate on an analysis!

Faced with such an integration challenge ...

... we tend to look away from some of the problems ...

Faced with such an integration challenge ...


... we tend to look away from some of the problems and from the need to collaborate more closely.

Collaborative Predictive Toxicology Challenge

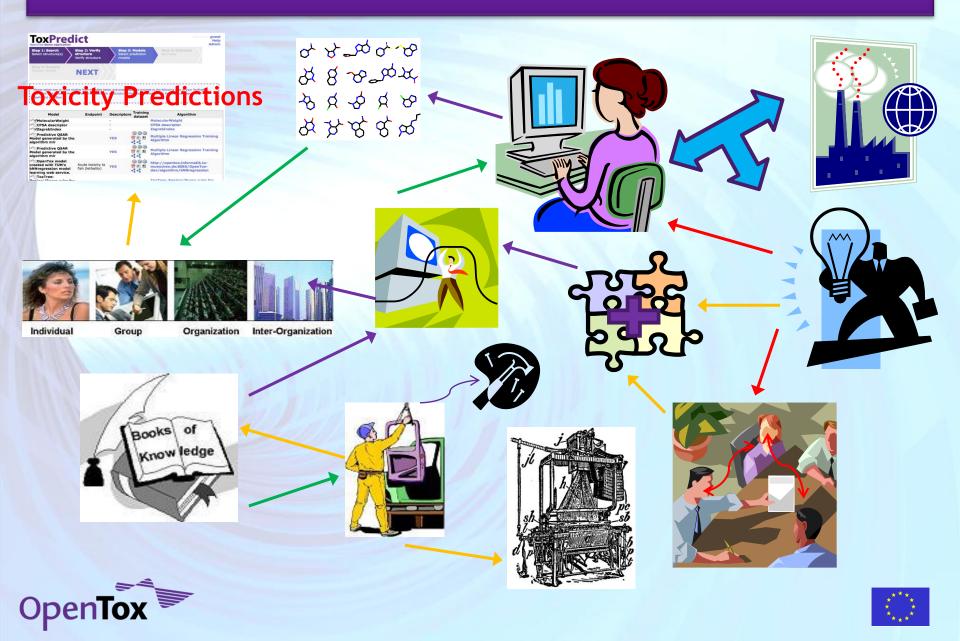
Input Structure

Out - Toxic or Not?

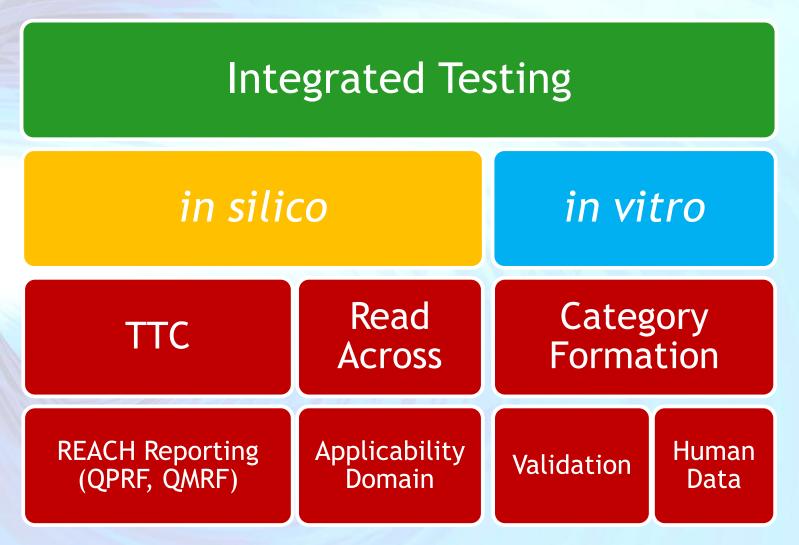
□ LD50

VO

- Liver Toxicity
- Secondary Metabolites
- Bioavailability
- Mutagenicity
- Carcogenicity
- ReproductiveToxicology
- Skin Irritation
- Aqua Toxicity
- Combined predictions for arrays of mutiple end points

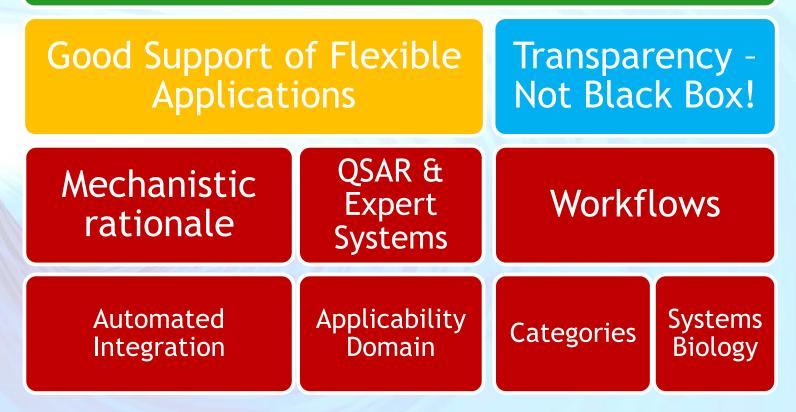


Driver Increasing demands on industry to satisfy safety evaluation and risk assessment required by REACH legislation.



Accelerating Knowledge Flows in Predictive Toxicology

Compelling Needs of Users



Communciated by Grace Patlewicz (Du Pont)

Compelling Needs of Users

Multidisciplinary R&D

Communciated by Stephanie Ringeissen (L'Oréal)

Challenges to Integrated Resources & Applications

- Database silos
- Missing information
- Varying quality
- Hard to integrate data
- Hard to integrate models
- No common framework

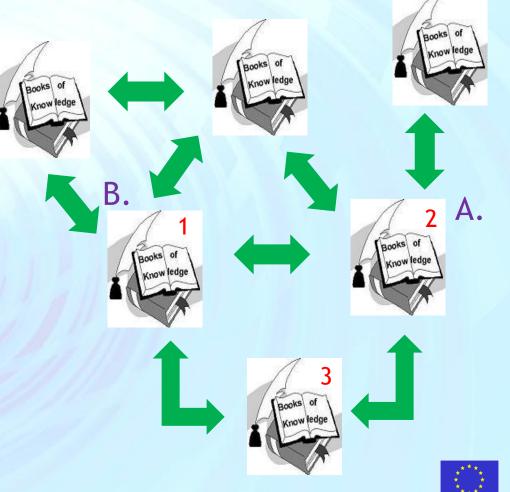
- Lack of standards
- Lack of validation
- Complex subject
- Application difficult
- Lack of transparency
- Interdisciplinary collaboration

Absence of Interoperability creates Problems

Adaptor Challenge in Jeddah, 2008

Interacting Components create Solutions

Adaptor Solution in Jeddah, 2008



Value is in Linking

The key idea of Google's founders in creating their search engine: There is useful knowledge in the links between Web Pages.

Page Ranking A page is ranked higher in a search if:

- A. it has more connections to it than other pages
- B. the pages connecting to it have higher ranking themselves

Linked Data is a term used to describe the exposing, sharing, and connecting of data on the Semantic Web using: URIs a generic means to identify entities in the world HTTP a simple yet universal mechanism for retrieving resources RDF a generic graph-based data model with which to structure and link data

Linked Data needs:

- 1. Provision of a URI that describes a Data Resource
- 2. Use of HTTP to retrieve useful data from the URI
- 3. A Data Format described with standardised semantics (so relationships are enabled) e.g. RDF
- 4. Data should provide links to other Data (through URIs)

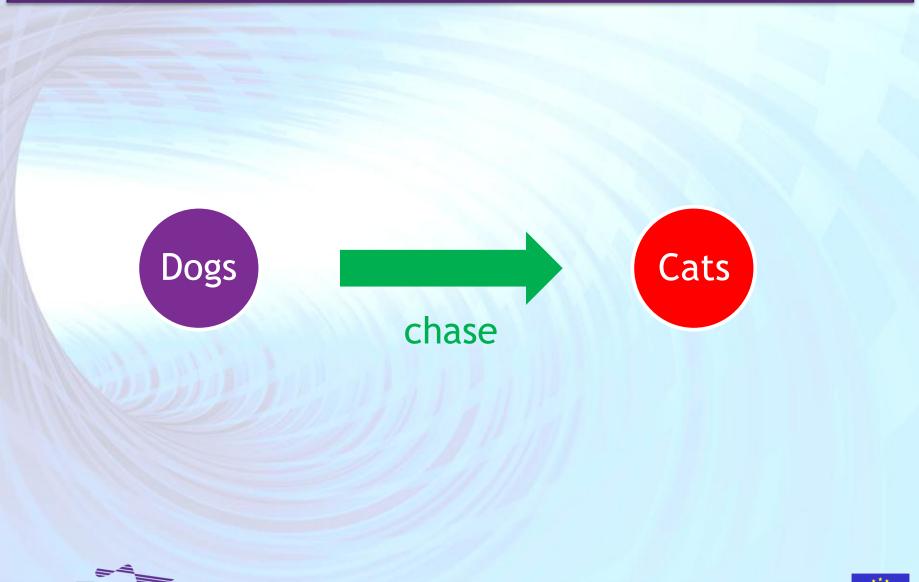
Linked Data approach can also be applied to other resource types e.g., for algorithms or models as done in OpenTox...

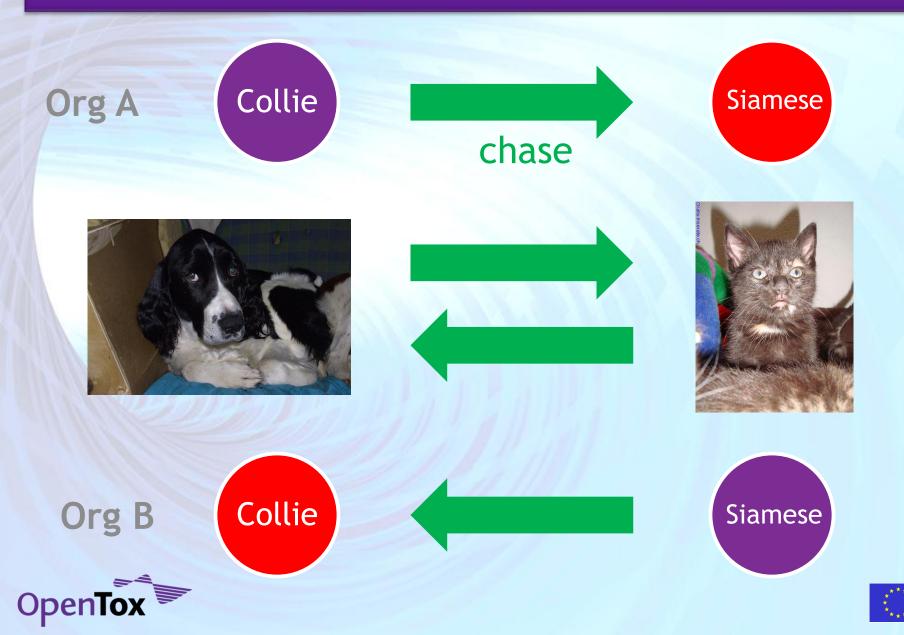
DBpedia = Linked Data approach applied to Wikipedia

Solution created by Linked Open Data, Web Applications and Crowdsourcing

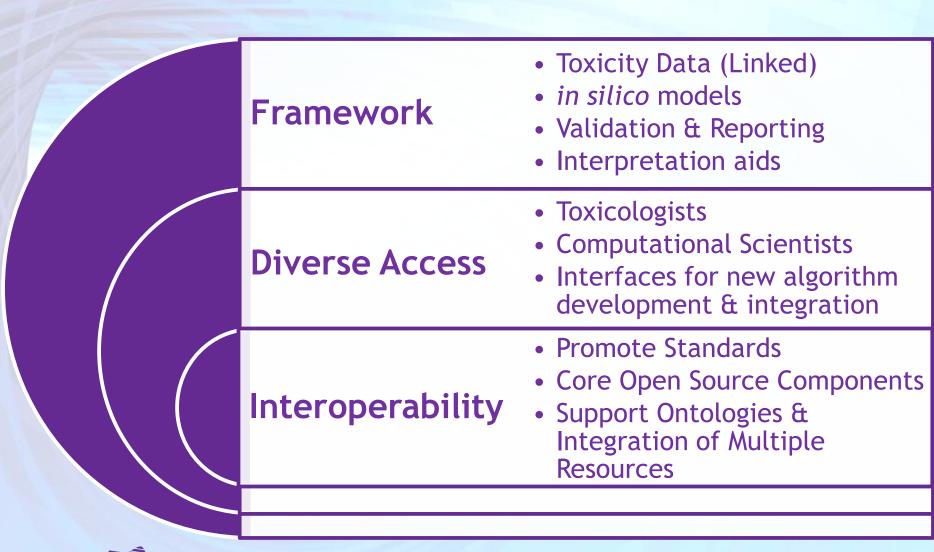
wiki.openstreetmap.org

Interoperability & Vocabulary

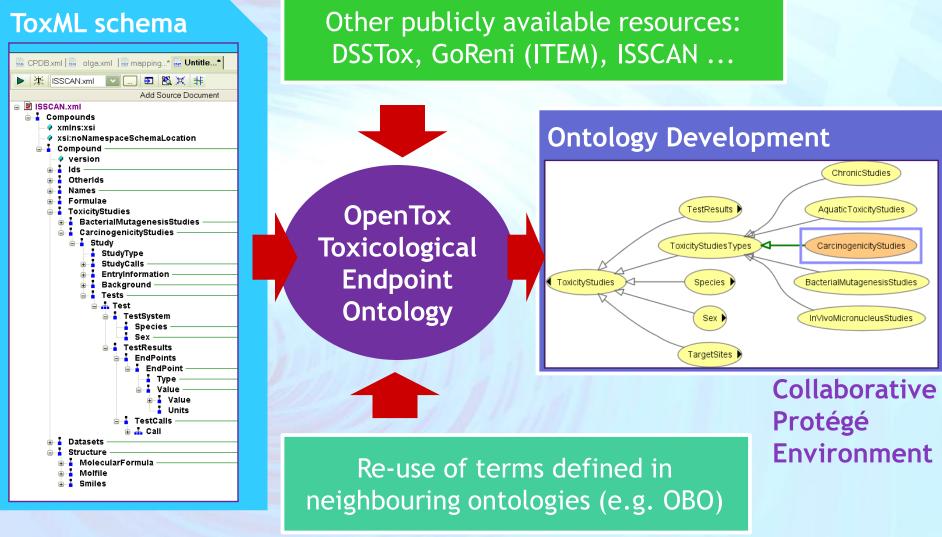




Interoperability & Vocabulary



Interoperability & Ontology


OpenTox Approach

Toxicological Endpoint Ontology Development

OpenToxipedia

		-														& Barry	Hardy	Log	out	×Q	uicktools	Site	e Setup		Help
Dpe	en	Tox		h.	s	ite Map	٨	ccessibi	lity	Cont	act	Data	1										Search S	iite	Þ
Home T	oxicity	Prediction	OpenTe	ox Blog))	People	F	artners		Develo	pment		OpenTo	xipedia	1										
User Guidano X Y		Latest Entries by Categories	A Entr	В	С	D nToxiped	E	F	G	н	Ι	J	к	L	м	N	0	Ρ	Q	R	s	т	U	v	W

You are here: Home » OpenToxipedia

Contents View Edit Rules Sharing History				
	Actions v	Display v	Add new v	State: Published ¥

OpenToxipedia

by Barry Hardy - last modified Sep 03, 2009 01:09 PM

OpenTox Community Resource for Toxicology Vocabulary and Ontology

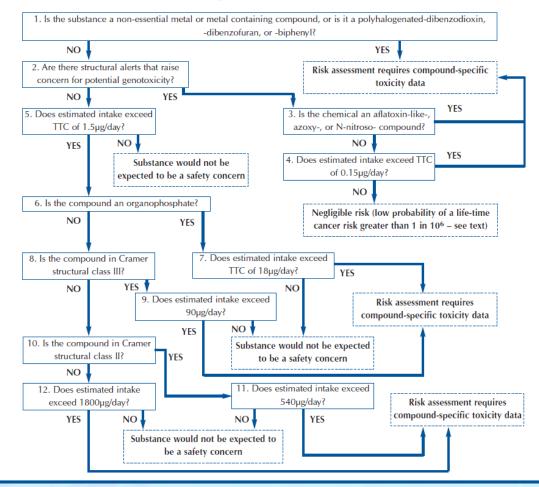
OpenTox is supporting the creation and curation of OpenToxipedia, a community-based predictive toxicology knowledge resource. All members of the community are welcome to provide entries, suggested definiton edits or additional information to entries in the resource.

OpenTox is supporting the application and development of the ToxML standard for representation of toxicology data, the OECD principles for (Q)SAR model validation, and the use of the OECD HT standard for regulatory reporting purposes.

OpenToxipedia provides here a Vocabulary Resource of toxicology terminology. We hope you find the resource useful and consider contributing to terms and their content.

Guidance for Vocabulary Resource entries

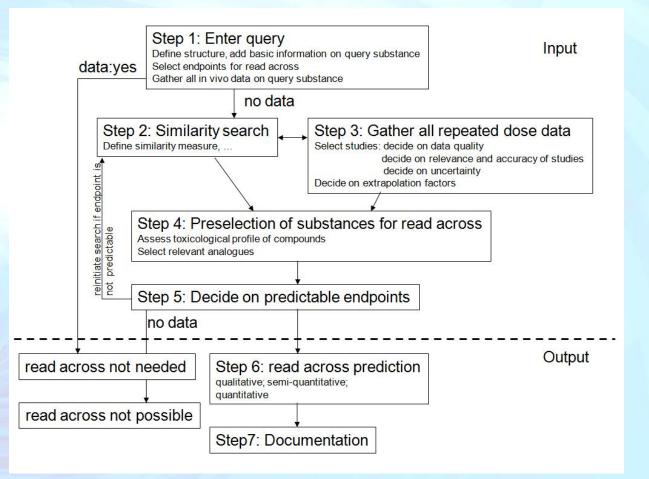
www.opentox.org/opentoxipedia

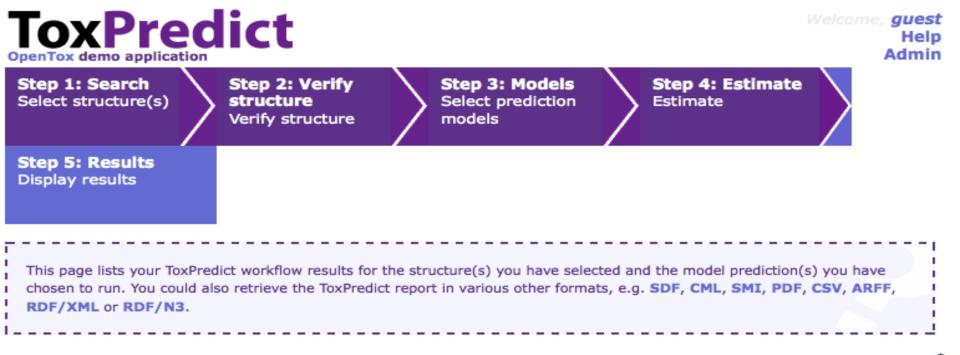


OpenTox Use Case Example

Implement Threshold of Toxicological Concern (TTC) using ILSI decision tree guidelines

Decision tree proposed by ILSI Europe to decide whether substances can be assessed by the TTC approach (From Kroes *et al., Food and Chemical Toxicology* 42, p76, 2004)

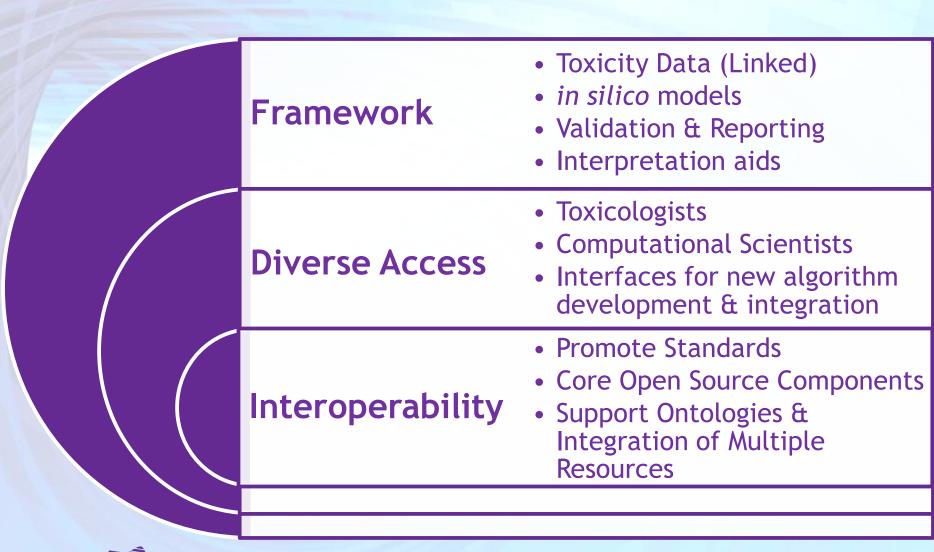



OpenTox Use Case Example

Support Read Across for Repeated Dose Toxicity

Download as CAS RN 71-43-2 200-753-7 EINECS IUPAC name benzene (6)annulene; benzine; Benzol; Benzolene; Synonym bicarburet of hydrogen; carbon oil; Coal naphtha; cyclohexatriene; mineral naphtha; motor benzol; nitration benzene; Phene; Phenyl hydride; pyrobenzol. Synonym 21742.0 Synonym Benzene Synonym benzene Quality label OK MolecularWeight ²⁴MolecularWeight MW 78.1112

	OECD Principle	OpenTox addresses Validation Principles by
1	Defined Endpoint	providing a unified source of well defined and documented toxicity data with a common vocabulary
2	Unambiguous Algorithm	providing transparent access to well documented models and algorithms as well as to the source code
3	Defined Applicability Domain	integrating tools for the determination of applicability domains during the validation of prediction models
4	Goodness-of-fit, robustness and predictivity	providing scientifically sound validation routines for the determination of errors and confidences
5	Mechanistic interpretation (if possible)	integrating tools for the prediction of toxicological mechanisms and the recording of opinions and analysis in reports


The OpenTox Framework Design

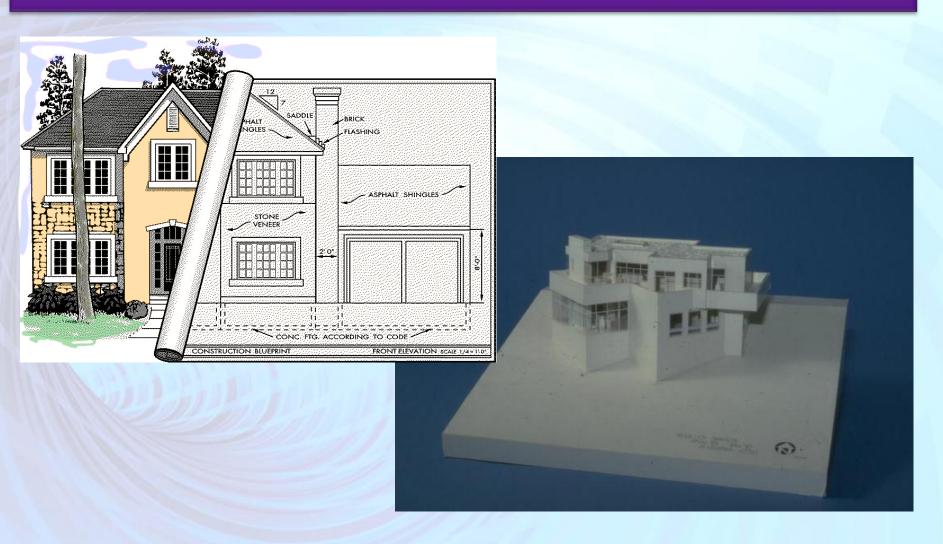
Stefan Kramer Technical University of Munich

OpenTox Approach

Strategic Context/Goals

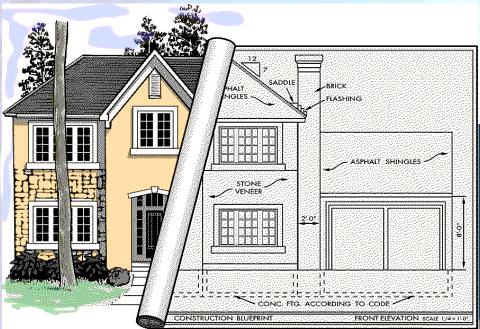
- REACH: possible reduction of test animals by using existing experimental data in conjunction with QSAR
- Also practical needs: reporting and form filling
- By the OECD principles, a number of requirements to a framework like OpenTox arise

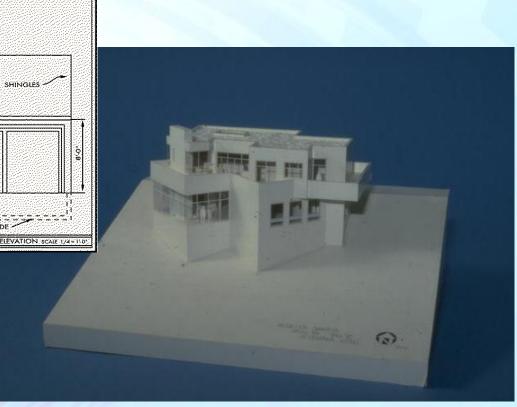
	OECD Principle	OpenTox addresses by
1	Defined Endpoint	providing a unified source of well defined and documented toxicity data with a common vocabulary
2	Unambiguous Algorithm	providing transparent access to well documented models and algorithms as well as to the source code
3	Defined Applicability Domain	integrating tools for the determination of applicability domains during the validation of prediction models
4	Goodness-of-fit, robustness and predictivity	providing scientifically sound validation routines for the determination of errors and confidences
5	Mechanistic interpretation (if possible)	integrating tools for the prediction of toxicological mechanisms and the recording of opinions and analysis in reports


Consequences for Requirements on OpenTox

User Requirements		Software Requirements
Umambiguous data	\Rightarrow	formal way of representing information about data
Unambiguous access	\Rightarrow	well-defined interfaces
Transparency of computational tools	\Rightarrow	formal way of representing information about methods , well-defined interfaces
Variety of user groups	\Rightarrow	simplicity and modularity of design
Need to integrate various resources (e.g., databases, prediction methods, models,) to make meaningful predictions	⇒	distributed architecture, interoperability
Need to integrate biological information	\Rightarrow	again, modularity of design, extensibility

Software Architecture


Software Architecture



Software Architecture

To solve a wide range of modelling tasks: needs buildings blocks (modularity) and well-defined ways of combining them

Technological choices...

Representational State Transfer (REST): What and Why?

What?

- Architectural style for distributed information systems on the Web
- Simple interfaces, data transfer via hypertext transfer protocol (HTTP), stateless client/server protocol

 GET, POST, PUT, DELETE
- Each resource is addressed by its own web address

Why?

- Lightweight approach to web services
- Simplifies/enables development of distributed systems
- (More or less) language independent/installation-free

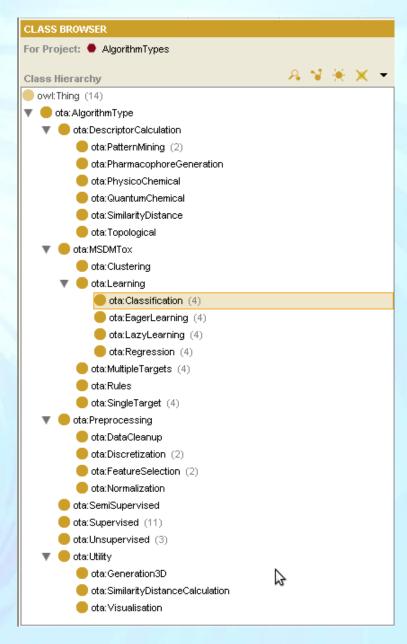
Ontologies: What and Why?

What?

• Formal, shared conceptualization of a domain

Why?

• Distributed services **need** to be able to "talk to each other", i.e. have a **common understanding** of endpoints, any type of property, methods, etc.



Ontologies

- Standards: OWL as representation language and SPARQL as query language
- There are many ongoing biological ontology projects
- Our strategy: use existing work and standards wherever possible
- However, there are new ontology needs for OpenTox applications, e.g. for algorithms, toxicological endpoints

OpenTox Ontology Working Group

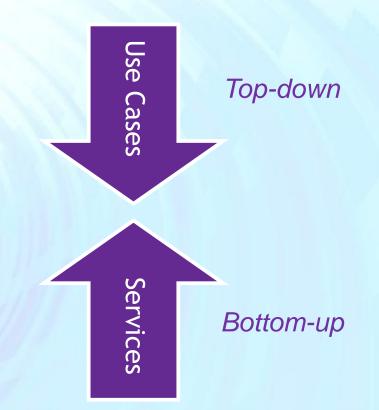
OpenTox: Databases

Chemical compoun Eile Edit		vzilla Firefox pokmarks <u>T</u> ools <u>H</u> elp	-	-	_		-				a x
🔇 💽 - C	C X 🟠 💫 Http://apps.ideaconsult.net:8180/ambit2/query/smarts?type=smiles&search=[*]OC(%3DO)[%236%3BH1]%3D[%236%3BH1]c1ccccc1&t 🏠 🔹 🛐 Google										
🥥 Disable• 🔱 Cooki	es* 🔤	CSS+ 📰 Forms+ 💻 Image	es* 🕕 Information* 🇐 I	Miscellaneous* 🌛	/ Outline 🖁	Resizer 🥜 Tools* 脑 View Source* ራ Options*					
Chemical compo	unds	*									-
ToxPredict TTC De	oxPredict TTC Depiction Datasets Chemical compounds Similarity Substructure Algorithms References Features Templates Models Ontology RDF playground Help										
200		hit	SMARTS [*]OC(Keywords	=O)[#6;H1]=[#6;I		Draw substructure		Search]		
			This			ucture and properties rvices are under development!					_
Retrieve data	Sear	ch results SMARTS [']OC(=O)[#6; Downlo	ad as 🞯 🖗 🤅) eo 👼 📆 🖬	🕅 🔩 Max number of hits: 100					
 Default Identifiers Datasets 	#	Compound	ECHA REGISTRATION DA	<u>ECHA</u> TE CasRN	ECHA EC	<u>ECHA</u> Names	SYNON	SYNON SY	CHA ECHA 'NON SYNON	SYNON S	SYNON
 Models Endpoints All descriptors pKa Molecule size Electronic 	1 © ©	Contraction of the second seco	<u>30.11.2010</u>	<u>78-37-5</u>		<u>linalyl cinnamate</u>					
descriptors (PM3 optimized structure) Electronic descriptors (original structure) Toxtree: Cramer rules	200		<u>30.11.2010</u>	<u>90-50-6</u>	<u>201-999-8</u>	<u>3,4,5-trimethoxycinnamic acid</u>					
http://apps.idea		P									

OpenTox: Databases

Dataset	ОК	Probably OK	Probably ERROR	Unknown	Probably ERROR%
ECHA list of pre-registered substances	N/A	N/A	N/A	N/A	N/A
Chemical Identifier Resolver	67779	5314	3638	3471	4.75%
ChemlDplus	64802	7986	921	1745	1.24%
ChemDraw	17918	1147	502	478	2.57%
JRC PRS list	61332	4833	4022	2880	5.83%
ISSCAN	931	50	98	62	9.40%
CPDBAS	778	37	0	693	0%
DBPCAN	60	2	0	147	0%
EPAFHM	281	5	0	331	0%
KIERBL	102	1	0	175	0%
IRISTR	346	16	0	177	0%
FDAMDD	213	19	1	983	0.08%
ECETOC skin irritation	158	12	0	5	0%
Skin sensitisation (LLNA)	160	7	4	38	1.95%
Bioconcentration factor (BCF) Gold Standard Database	N/A	N/A	N/A	N/A	N/A

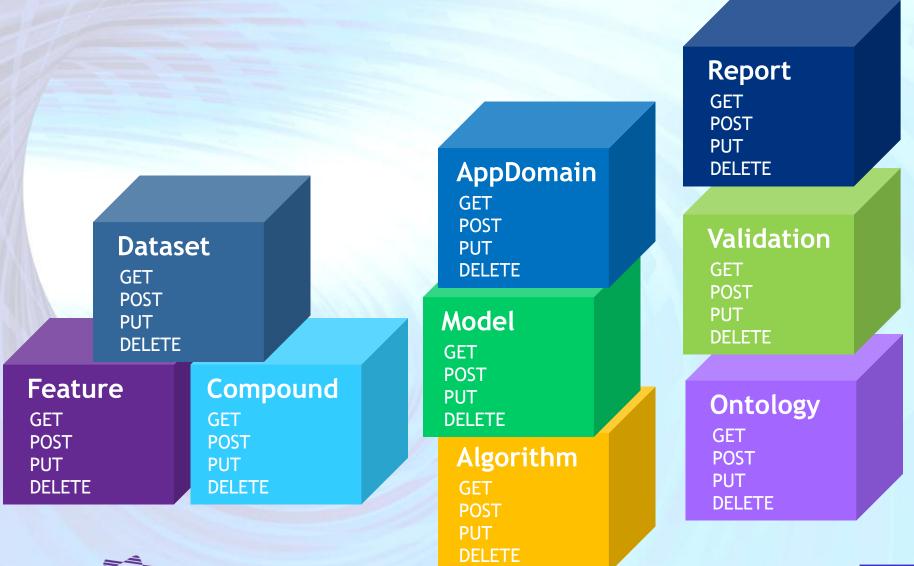
Integrating diverse data sources into OpenTox ontology


Development Process

Bidirectional

- from the services (building blocks) to the use cases, and, vice versa,
- from the use cases to the services

Use cases


- ToxPredict (shown later)
- ToxCreate (shown later)
- Read-across
- ToxCast

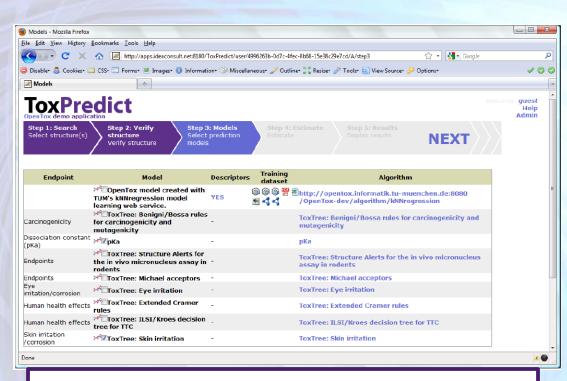
Overview of Application Programming Interfaces

Description	Method	URI	Parameter	Result	Status codes
Get available feature URIs for a compound	GET	/compound/{cid}/feature	? feature_uris[] ="URIto features" (optional)	Returns representation of the features as uri-list or RDF All available features are returned, if no parameter is specified.	200,404,503
Create a new feature value	POST	/compound/{cid}/feature	? feature_uri= "URIto feature" (mandatory, single feature)& value =the_value	URI of the compound with the new feature, e.g. /compound/{id}?feature_uris[]=the- new-feature	200,400,503
Update a new feature value	PUT	/compound/{cid}/feature	? feature_uri ="URIto feature" (mandatory, single feature)& value =the_value		200,400,404,503
Delete specified features from the compound	DELETE	/compound/{cid}/feature	? feature_uris[] ="URIto features" (optional)		200,400,404,503

Description	Method	URI	Parameters	Result	Status codes
i					
get descript specific fea definition		/feature/{id}	-	URI-list or RDF representation of a feature.	200,404,503
create a nev	v feature POST	/feature	Content-type ="any-of-RDF- types", content=RDF- representation	URI of the new feature definition.	200,400,404,503
update feat	ure PUT	/feature/{id}	Content-type ="any-of-RDF- types", content=RDF- representation	-	200,400,404,503
delete featu	re DELETE	/feature/{id}	-	-	200,400,404,503
get a list of feature defi		/feature	? query= URI-of-the- owl:sameAs-entry	URI list or RDF of features found by the query or all available, if query is empty. Returns all features, for which owl:sameAs is given by the query.	200,404,503

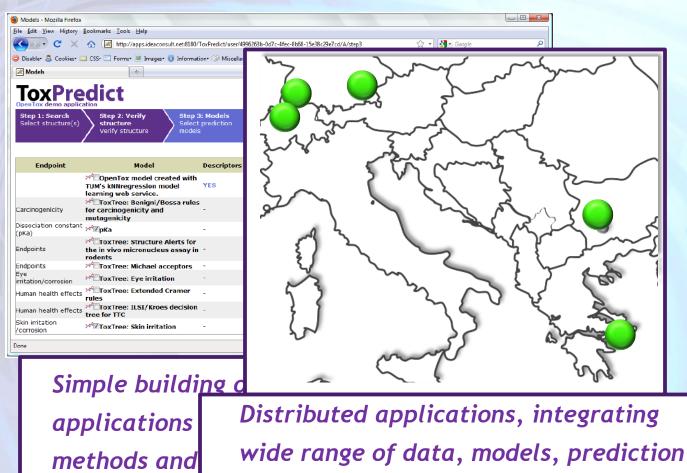
De	Description	Method	URI	Parameters	Result	Status codes
ge	Get a list of available datasets	GET	/dataset	Query parameters (optional, to be defined by service providers).	List of URIs or RDF for the metadata only.	200,404,503
sp de cr	Get a dataset	GET	/dataset/{id}	-	Representation of the dataset in a supported MIME type.	200,404,503
	Query a dataset	GET	/dataset/{id}	compound_uris[] and/or feature_uris[] to select	Representation of the query result in a	200,404,503
uŗ				compounds and features; further query parameters may be defined by service providers.	supported MIME type.	
de ge fei	Get metadata for a dataset	GET	/dataset/{id}/metadata	-	Representation of the dataset metadata in a supported MIME type.	200,404,503
	Get a list of all compounds in a dataset	GET	/dataset/{id}/compounds	-	List of compound URIs.	200,404,503
	Get a list of all features in a dataset	GET	/dataset/{id}/features	-	RDF or List of feature URIs (pointing to feature definitions/ontologies).	200,404,503

Description M	athod	LIDI	Paramotore	Pocult	Status codes
Description	Method	URI	Parameters	Result	Status codes
Get a list of all available models	GET	/model	(optional) ?query=URI-of-the-owl:sameAs- entry	List of model URIs or RDF representation. If query specified, returns all models, for which owl:sameAs is given by the query.	200,404,503
Get the representation of a model	GET	/model/{id}	_	Representation of the model in a supported MIME type.	200,404,503
Delete a model	DELETE	/model/{id}	-	-	200,404,503
Apply a model to predict a dataset	POST	/model/{id}	dataset_uri result_dataset=dataseturi dataset_service=datasetserviceuri	URI of created prediction dataset (predictions are features), task URI for time consuming computations.	200,202,400,404,500,503
Apply a model to predict a compound	POST	/model/{id}	compound_uri	Prediction in a supported MIME type; task URI for time consuming computations.	200,202,400,404,500,50



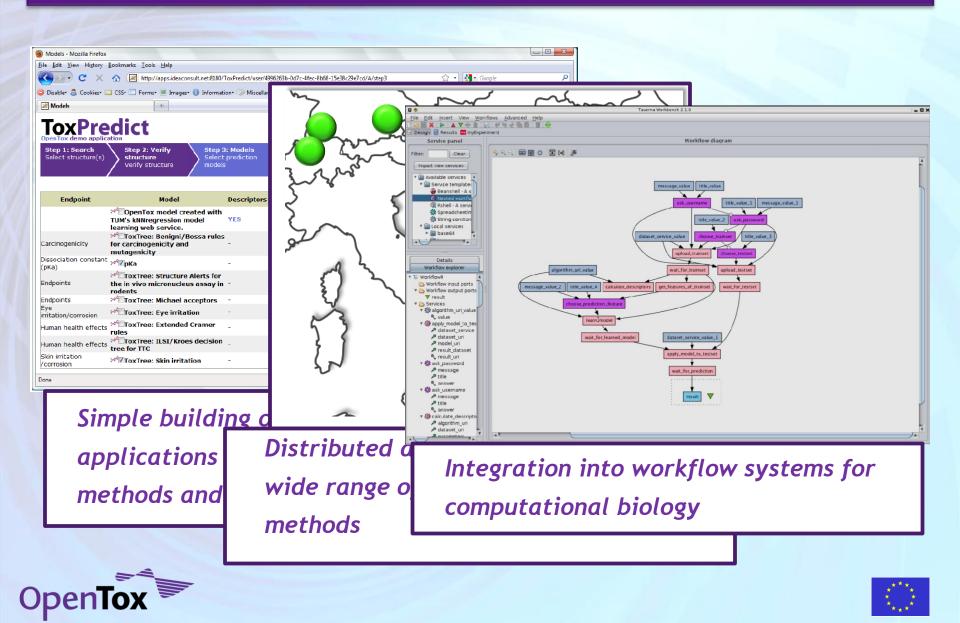
	Description	Method	URI	Parameters	Result	Status codes
,	Retrieve SPARQL query results	GET	/ontology	?query =SPARQL_QUERY (mandatory)	RDF representation of the query results.	200,404,500
-	Predefined query to retrieve all models	GET	/ontology/models		RDF representation of all models.	
	Predefined query to retrieve all endpoints	GET	/ontology/endpoints		RDF representation of all endpoints.	
- ; - ;	Predefined query to retrieve all algorithms	GET	/ontology/algorithms		RDF representation of all algorithms.	
	Submit SPARQL query and/or OpenTox service URL	POST	/ontology	uri[]= URL of a OpenTox RDF resource query= SPARQL_QUERY	RDF representation of the query results, if query is specified. if uri [] is specified, the server retrieves a RDF representation and adds it to the RDF storage, thus making it available for the subsequent queries.	200,404,500,502

What you can do with it ...



Simple building of predictive toxicology applications based on well-established methods and databases

What you can do with it ...



methods

What you can do with it ...

ToxCast

- Focus on prediction of toxicological endpoints
- Use in vitro data to predict in vivo endpoints
- Multi label approach
 - approximately 400 labels, 300 instances, 1600 features

	I	n vitro	In vivo			
Structure	tructure ncgc_ar_agonist ncgc_ar_antagonist			chr_rat_thyroid	ch_rat_liver	
Abamectin	1	0	•••	0	0	
Acephate	0	0	•••	0	1	
Acetamiprid	1	1	•••	1	0	
			•••			

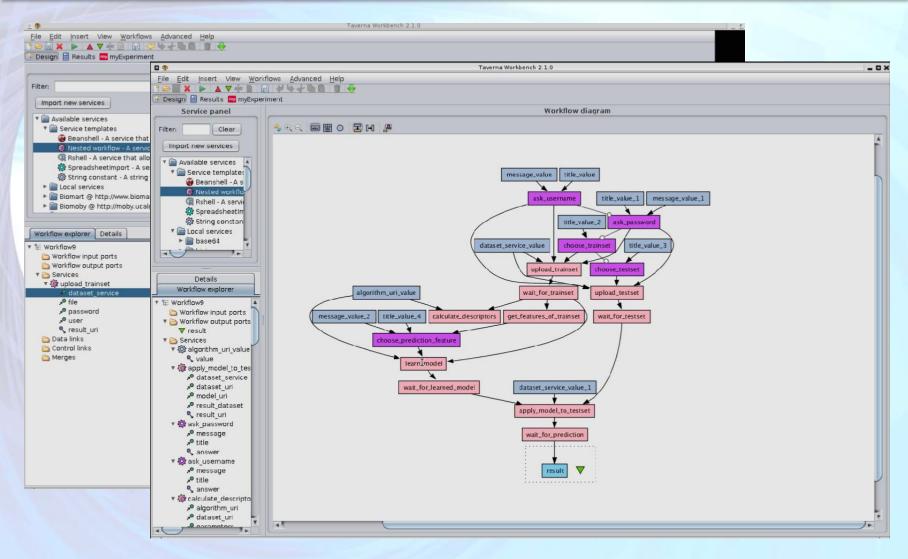
ToxCast: Approach and Further Steps

- Use all data available at this point, including data points with **missing values**
- Take into account interdepencies between *in vivo* endpoints (multi-label classification)
 - improves upon predicting endpoints individually
- Use applicability domain on *in vitro* data to avoid unjustified predictions
 - improves upon predicting everything
- Results comparable to other multi-label datasets
- Further steps: take into account descriptions of assays to link into biological databases

Taverna Workflow System

- Standard for workflows in computational biology
- OpenTox services can be integrated into Taverna workflows
- Allows for the integration of biological information
 - pathway data, ...
 - mechanistic explanation

Taverna Workflow System


8			Taverna Worl	bench 2.1.0		
	dit Insert View Workflows Advanced Help					
	X 🕨 🔺 🗸 🔶 🔛 🤣 🌳 👉 🛍 🗂 🖶					
esign	n 🖩 Results 🚾 myExperiment					
	Service panel					Workflow diagram
				🍕 Q Q 📾 🏢 C	(P) n.0	(78)
ter:		Clear				2
Impo	ort new services					
	wallable services					
	Service templates		5			
	Beanshell - A service that allows Beanshell scripts, with dependencies	on libraries				
	Rested workflow - A service that allows you to have one workflow nest		her			
	Rshell - A service that allows the calling of R scripts on an R server					
	DireadsheetImport - A service that imports data from spreadsheets					
	徽 String constant - A string value that you can set		- F			
	Local services					
	Biomart @ http://www.biomart.org/biomart/martservice		_			
•	Biomoby @ http://moby.ucalgary.ca/moby/MOBY-Central.pl		T			
		•		iput	ĸ	
orkflo	ow explorer Details				-	
	rkflow9		Enter string v	to an entre.		
	Vorkflow input ports		8080/ambit2	/dataset/291/features		
	Vorkflow output ports					
	Services			Cancel QK		dataset_service password user file
*德	pload_trainset					
						query_server
	م nie مassword					
	» password » user					result_uri 🛡
	s result_uri					
	Data links					
	Control links					
M	lerges					

Test workflows will be provided for download

Taverna Workflow System

Test workflows will be provided for download

Consequences for Requirements on OpenTox

User Requirements		Software Requirements
Umambiguous data	\Rightarrow	formal way of representing information about data
Unambiguous access	\Rightarrow	well-defined interfaces
Transparency of computational tools	\Rightarrow	formal way of representing information about methods , well-defined interfaces
Variety of user groups	\Rightarrow	simplicity and modularity of design
Need to integrate various resources (e.g., databases, prediction methods, models,) to make meaningful predictions	⇒	distributed architecture, interoperability
Need to integrate biological information	\Rightarrow	again, modularity of design, extensibility

Strategic Context/Goals

- REACH: possible reduction of test animals by using existing experimental data in conjunction with QSAR
- Also practical needs: reporting and form filling
- By the OECD principles, a number of requirements to a framework like OpenTox arise

	OECD Principle	OpenTox addresses by
1	Defined Endpoint	providing a unified source of well defined and documented toxicity data with a common vocabulary
2	Unambiguous Algorithm	providing transparent access to well documented models and algorithms as well as to the source code
3	Defined Applicability Domain	integrating tools for the determination of applicability domains during the validation of prediction models
4	Goodness-of-fit, robustness and predictivity	providing scientifically sound validation routines for the determination of errors and confidences
5	Mechanistic interpretation (if possible)	integrating tools for the prediction of toxicological mechanisms and the recording of opinions and analysis in reports

Summary and Future Work

- Comprehensive framework for predictive toxicology that allows you to address a wide range of tasks
 - interface definitions, services (also for: validation, reporting, ...), use cases
 - interoperability and extensibility by design
- Further work on other use cases: e.g.
 - Read Across (technical infrastructure available)
 - ToxCast
 - pathway prediction service: developing a service for predicting transformation products
 - Synergy pilot

OpenTox Application Demonstrations

Nina Jeliazkova (Ideaconsult, Bulgaria) Christoph Helma (In Silico Toxicology, Switzerland) Andreas Karwath (Albert-Ludwigs Univ. Freiburg, Germany)

Use Cases

ToxPredict

- offers easy access for toxicological hazard estimation of a chemical structure
- for non-QSAR specialists
- a simple yet easy-to-use user interface

ToxCreate

is aimed at researchers in

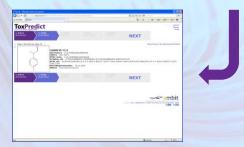
- life sciences and toxicology
- QSAR experts
- people interested in machine learning/statistics
- pharmaceutical industry R&D

ToxPredict

The use case can be divided into the following five steps:

- 1. Enter/select a chemical compound
- 2. Display selected/found structures
- 3. Select models
- 4. Perform the estimation
- 5. Display the results

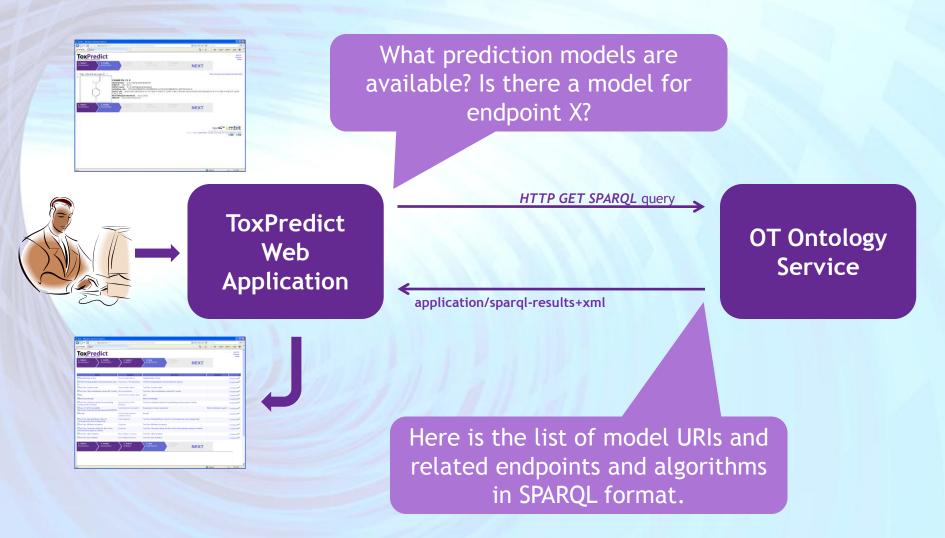
→ Live Demo: <u>www.toxpredict.org</u>


ToxPredict: Step 1 (behind the scenes)

Find structure by name, registry number, SMILES, InChI, structure, substructure, similarity...

ToxPredict Web Application OT Dataset API HTTP GET

OT Ontology Service


text/uri-list, application/rdf+xml, chemical/x-daylight-smiles chemical/x-mdl-sdfile,...

Here is the list of structures as URI links, RDF, MOL or SMILES.

ToxPredict: Step 3 (behind the scenes)

ToxCreate: intended audience

Toxicologists with

- access to toxicological data
- basic computer skills
- little or no knowledge of QSAR algorithms

Goal:

 build and validate prediction models from user provided training data

→ Live demo <u>www.toxcreate.org</u>

Future Development

Inclusion of further QSAR algorithms

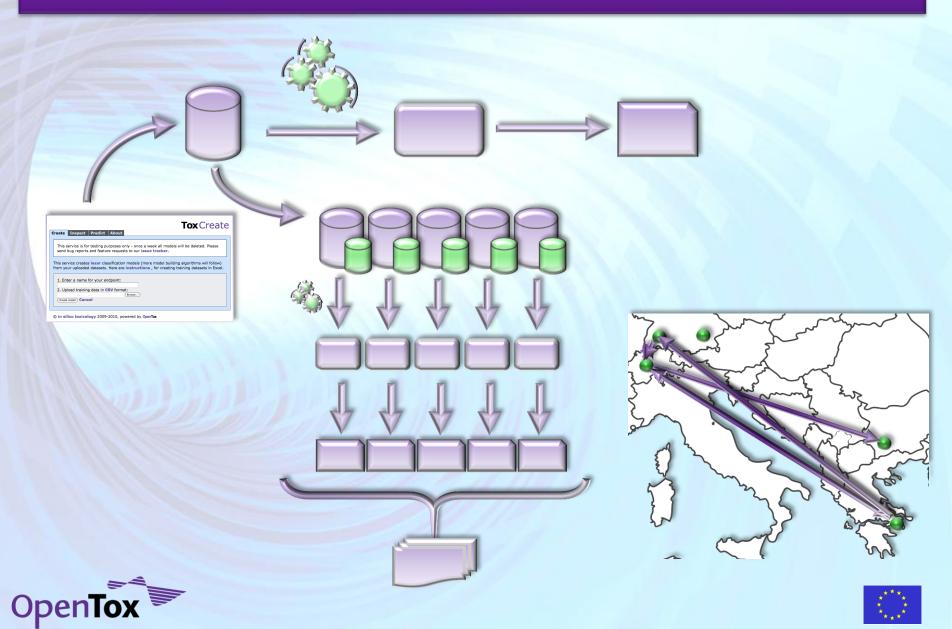
- build and validate multiple models
- automated selection of the best model (based on validation results)

GUI refinement:

- based on user feedback

Expert interface:

- access to all model building parameters
- command line/GUI versions


Behind the Scenes of ToxCreate

This service is for testing purposes only - once a week all models will be deleted. Please ports and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests to our issue tracker. Image: Service and feature requests tracker. Image: Service		Create Inspect Predict About
e In silico toxicology 2009-2010, powered by Openiae I. Enter a name for your endpoint:	This service is for testing purpos send bug reports and feature re This service creates lazar classific from your uploaded datasets. Hen 1. Enter a name for your endpo 2. Upload training data in CSV f	Tox Create total action action and feature requests to our issue tracker. action action models (more model building algorithms will follow) action action action models (more model building algorithms will follow) action acti
Create model Cancel	0 in silico tosicolegy 2009-201	1. Enter a name for your endpoint: 2. Upload training data in CSV format: Browse

Behind the Scenes of ToxCreate

Current State of the System

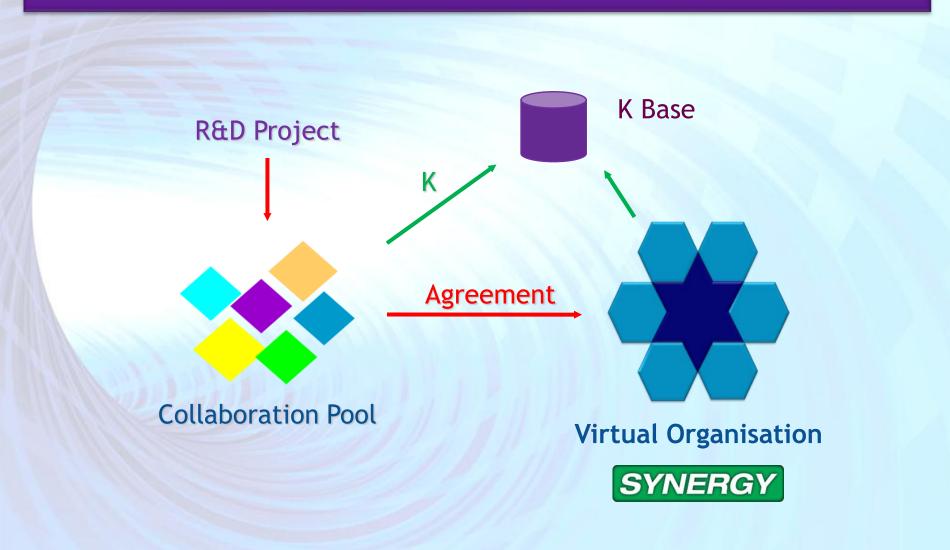
Web services online:

AlgorithmWS:NTUA, TUM, IDEA, ISTModelWS:NTUA, TUM, IDEA, ISTFeatureWS:NTUA, TUM, IDEA, IST, ALU-FRCompoundWS:NTUA, TUM, IDEA, ISTValidationWS:ALU-FRDatasetWS:NTUA, TUM, IDEA, IST, ALU-FR

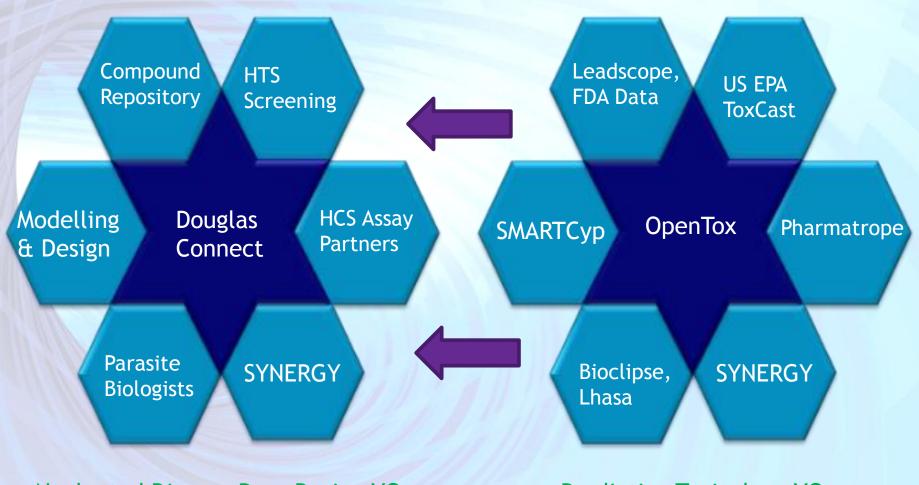
Collaboration, Sustainability & Future Directions

Barry Hardy Douglas Connect OpenTox Project Coordinator

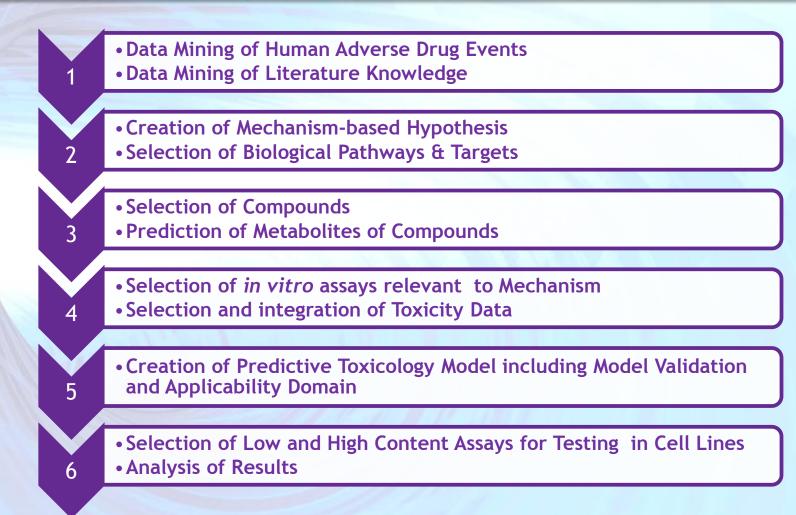
Our Drivers - Taking on Technical, Cultural and "Other" Challenges of the Unexpected



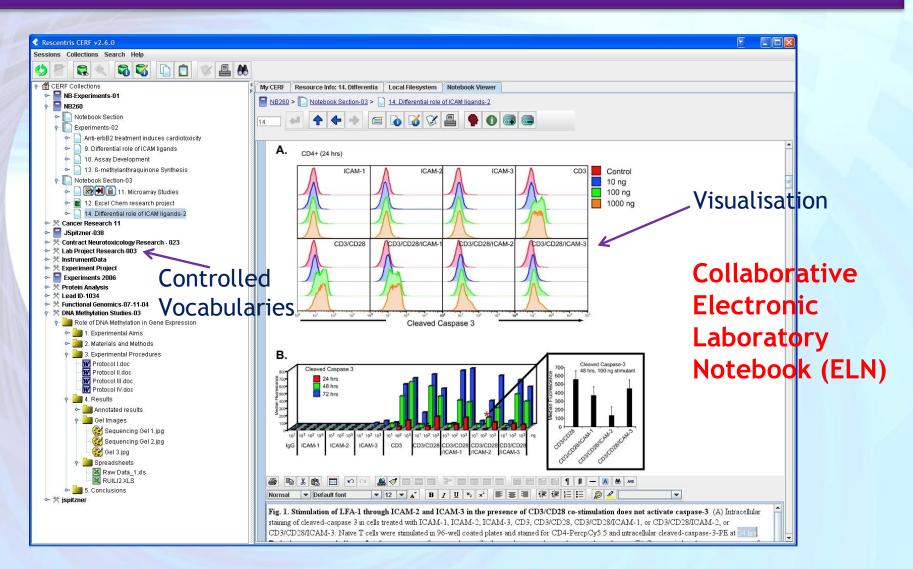
Visit with Lions at Mukuni Reintroduction Project, Livingstone, Zambia

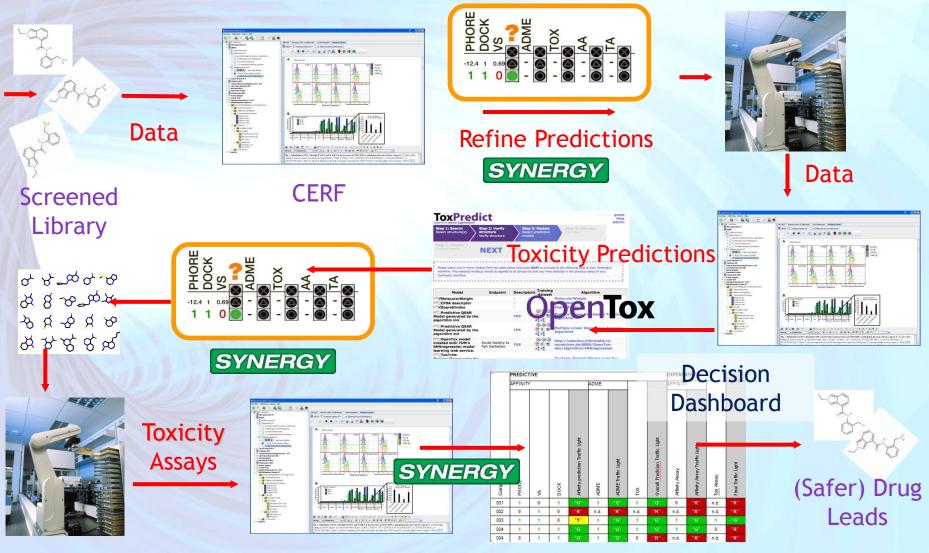

Virtual Organisation Pilots

Virtual Organisation Pilots

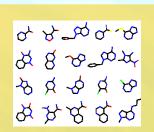

Neglected Disease Drug Design VO

Predictive Toxicology VO


OpenTox - Synergy Predictive Toxicology VO Pilot Strategy Development & Case Study


Recording of Collaborative R&D

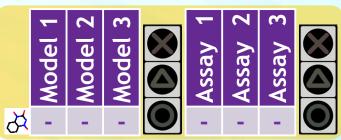
Synergy Collaboration Pilots



1. A library of compounds is entered to the ELN

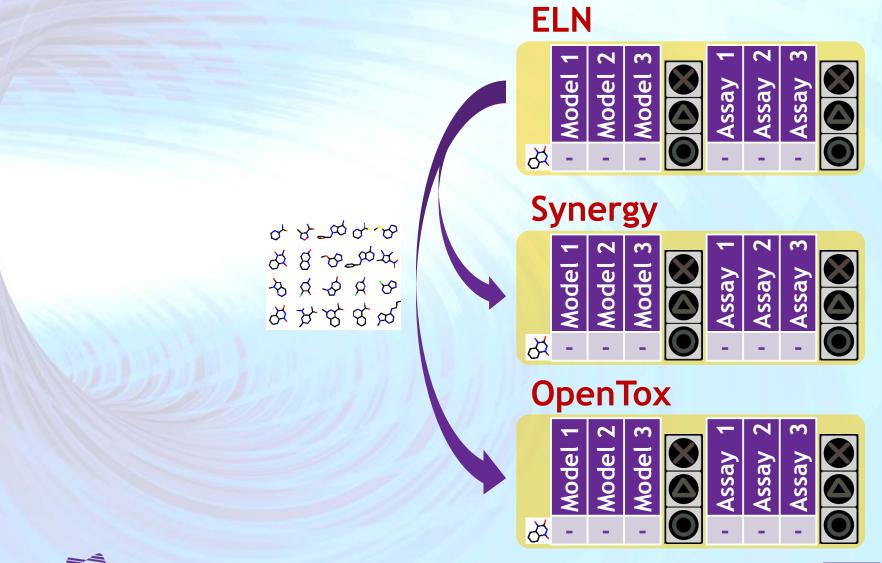
8 8 8 20 20 20 0 8 20 00 20 र र र र र र भेर द स

Synergy

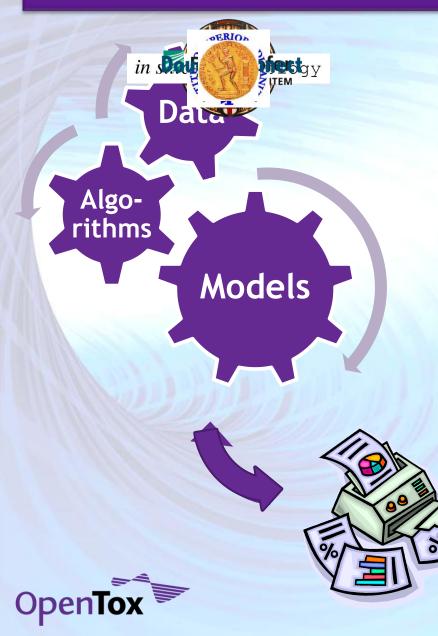

ELN

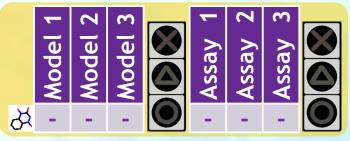
2. Each compound is assigned a data structure in ELN

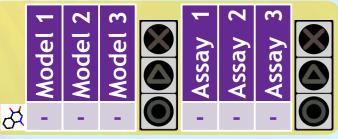
ELN



Synergy


3. ELN passes compounds to OpenTox and SYNERGY




4. OpenTox computes toxicity predictions

ELN

Synergy

5. OpenTox sends back a report to ELN

ELN

Model

Synergy

Model 1 Model 2 Model 3

OpenTox

Model

Model

Model

ಸ

ನ

र्ष

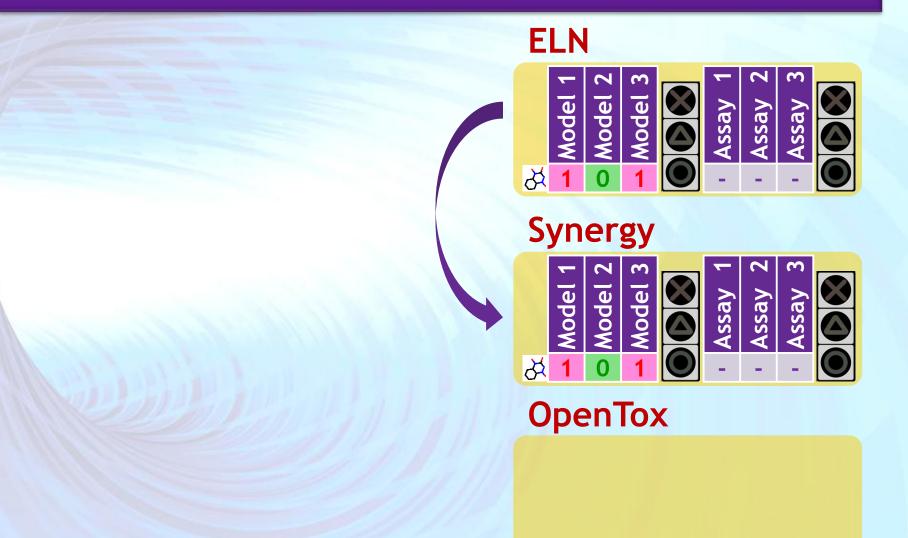
Model :

Assay Assay

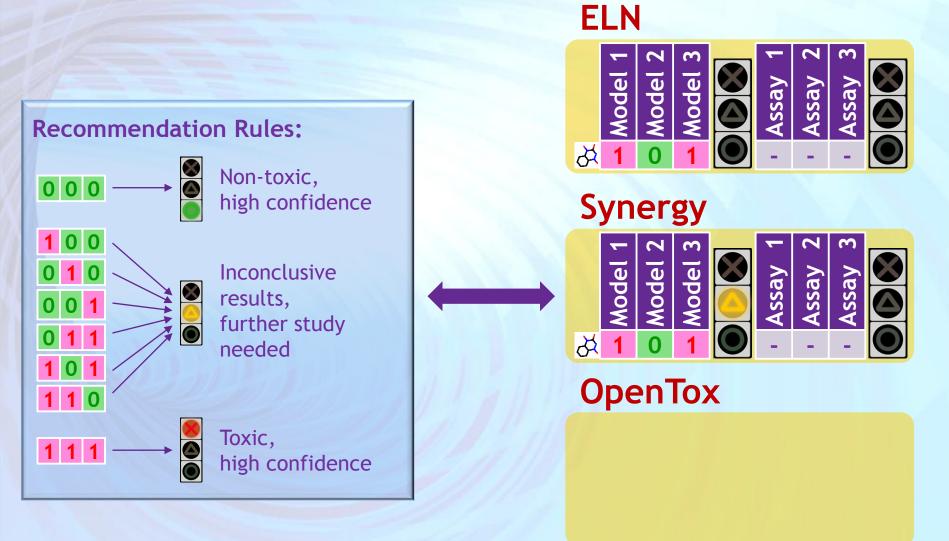
Assay Assay

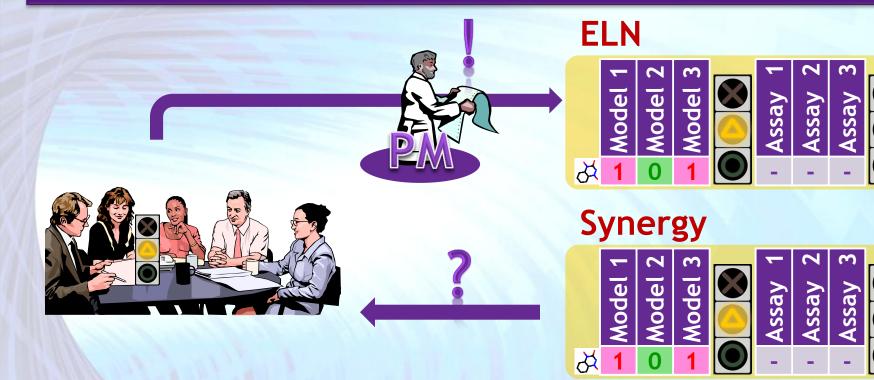
> Assay Assay

Assay


Assay

Assay


6. ELN sends the results to SYNERGY

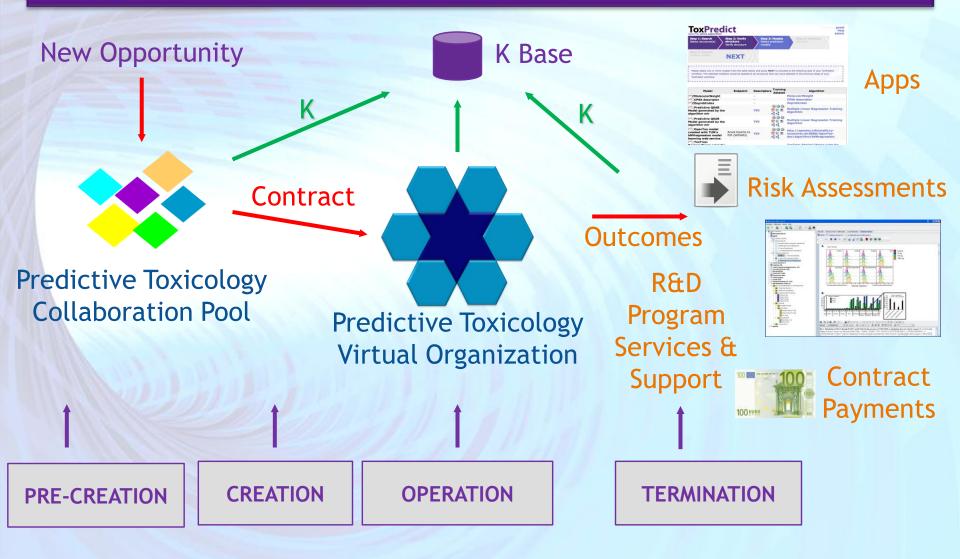

7. SYNERGY applies the Recommendation Rules

8. Inconclusive data \rightarrow SYNERGY calls a meeting

9. Experimental assays confirm toxicity



ELN


Synergy

Sustainability Model

Service Support of Virtual Organisation Lifecycle

Acknowledgements - OpenTox Partners

In Silico Toxicology, Switzerland

Douglas Connect, Switzerland Albert Ludwigs University Freiburg, Germany

Ideaconsult, Bulgaria

Istituto Superiore di Sanità, Italy

Technical University of Munich, Germany

David Gallagher, UK

Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, Russia National Technical University of Athens, Greece

Fraunhofer Institute for Toxicology & Experimental Medicine, Germany

Seascape Learning, India

Acknowledgements - Co-workers

Barry Hardy Nicki Douglas **Roman Affentranger Christoph Helma** Michael Rautenberg Nina Jeliazkova Vedrin Jeliazkov Luben Boyanov Chelsea Jiang Martin Martinov Romualdo Benigni Olga Tcheremenskaia Stefan Kramer **Tobias Girschick**

Fabian Buchwald Jörg Wicker Andreas Karwath Martin Gütlein Andreas Maunz Haralambos Sarimveis Georgia Melagraki Antreas Afantitis Pantelis Sopasakis **David Gallagher** Vladimir Poroikov **Dmitry Filimonov Alexey Zakharov Alexey Lagunin**

Tatyana Gloriozova Sergey Novikov Natalia Skvortsova Sunil Chawla **Steve Bowlus** Indira Ghosh Surajit Ray **Gaurav Singhai Om Prakash** Sylvia Escher Sara Weiss Helvi Grimm

OpenTox Advisory Board

- European Centre for the Validation of Alternative Methods
- Pharmatrope
- Bioclipse
- U.S. Environmental Protection Agency
- U.S. Food & Drug Administration
- Nestlé
- Roche
- AstraZeneca

- LHASA
- Leadscope
- University of North Carolina
- EC Environment Directorate General
- Organisation for Economic Cooperation & Development
- CADASTER
- Bayer Healthcare

Final words...

For more information, visit
www.opentox.org

Contact me: barry.hardy@douglasconnect.com

Many thanks for your attention!

OpenTox - An Open Source Predictive Toxicology Framework, www.opentox.org, is funded under the EU Seventh Framework Program: HEALTH-2007-1.3-3 Promotion, development, validation, acceptance and implementation of QSARs (Quantitative Structure-Activity Relationships) for toxicology, Project Reference Number Health-F5-2008-200787 (2008-2011).

