
Large-Scale Graph Mining
Using Backbone Refinement Classes

Andreas Maunz
Freiburg Center for Data

Analysis and Modeling (FDM)
Hermann-Herder-Str. 3

D-79104 Freiburg i. Breisgau,
Germany

maunza@fdm.uni-
freiburg.de

Christoph Helma
in-silico Toxicology

Altkircherstr. 4
CH-4054 Basel, Switzerland

helma@in-silico.de

Stefan Kramer
Institut für Informatik/I12,
Technische Universität

München
Boltzmannstr. 3

D-85748 Garching b.
München, Germany

kramer@in.tum.de

ABSTRACT

We present a new approach to large-scale graph mining
based on so-called backbone refinement classes. The method
efficiently mines tree-shaped subgraph descriptors under min-
imum frequency and significance constraints, using classes
of fragments to reduce feature set size and running times.
The classes are defined in terms of fragments sharing a com-
mon backbone. The method is able to optimize structural
inter-feature entropy as opposed to occurrences, which is
characteristic for open or closed fragment mining. In the
experiments, the proposed method reduces feature set sizes
by >90 % and >30 % compared to complete tree mining and
open tree mining, respectively. Evaluation using crossvali-
dation runs shows that their classification accuracy is simi-
lar to the complete set of trees but significantly better than
that of open trees. Compared to open or closed fragment
mining, a large part of the search space can be pruned due
to an improved statistical constraint (dynamic upper bound
adjustment), which is also confirmed in the experiments in
lower running times compared to ordinary (static) upper
bound pruning. Further analysis using large-scale datasets
yields insight into important properties of the proposed de-
scriptors, such as the dataset coverage and the class size
represented by each descriptor. A final cross-validation run
confirms that the novel descriptors render large training sets
feasible which previously might have been intractable.

A C++ implementation is available at http://www.maunz.

de/libfminer-doc/.

Categories and Subject Descriptors

G.2.2 [Graph Theory]: Graph Algorithms, Trees; H.2.8
[Database Applications]: Data Mining, Statistical Databases

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

General Terms

Theory, Experimentation, Performance

1. INTRODUCTION AND BACKGROUND
Current methods for subgraph mining still suffer from

scalability problems and, quite related, problems with ex-
cessively large solution sets. Most of the predominant ap-
proaches employ minimum frequency and possibly statistical
correlation criteria such as χ2 values [6, 8, 13, 2, 5]. An in-
creasing minimum frequency tends to favor a higher entropy
of a pattern occurrence. Statistical constraints retrieve sub-
graphs that are correlated with the target classes. However,
the thresholds used usually lead to an explosion in the num-
ber of frequent patterns, which is a significant drawback
of these approaches. As a result, the size of the resulting
pattern set is often multiple times the size of the original
database, which makes it unusable for subgraph-based clas-
sification models, at least for very large datasets.

In order to build a more sparse representation with a
significantly reduced number of solution patterns, the pat-
tern set is often constrained to open1 or closed features.
This might however prune important structural information,
since only the support is considered. In this study, we pro-
pose a method to increase inter-pattern entropy and reduce
pattern set size by increasing structural dissimilarity. In
order to reduce the space of frequent and significant pat-
terns, we use a natural property of tree-shaped subgraphs
(the backbone) to represent classes, which renders the set us-
able for computational models even for large scale datasets.
We employ the chemical domain as our application area, i.e.,
we seek fragments of chemical compounds that are associ-
ated with a classification endpoint, e.g., carcinogenicity or
genotoxicity.

Various types of subgraph patterns, such as paths, trees,
and general subgraphs, have been investigated for databases
of molecular graphs so far [2]. For the databases used in this
study, however, pattern sets contain about 5-10% paths, 80-
85% real trees and 10% real cycle-closing graphs, which may
be quite representative for many applications. Although
there exists an efficient method for mining subgraphs shaped
as outerplanar graphs (a strict generalization of trees which

1We decided to use the term ’open’ instead of ’free’ (which
is more common in the data mining literature), because ’free
tree’ is used as a synonym for ’unrooted tree’ in graph theory.

may contain cycles [4]), we restrict ourselves to the largest
fragment class, because there is some evidence that cycle-
closing graphs may not generally improve performance in
SAR models [2].

1.1 Problem Formulation

Graph Databases.
We assume a graph database R = (r, Σ, a), where r is a

set of graphs, Σ 6= ∅ is a totally ordered set of labels and
a : r → {0, 1} is a function that assigns a truth value to
every graph in the database (binary classification). Graphs
with the same classification are collectively referred to as
target classes. Every graph r ∈ r is a labelled, undirected
graph, i.e. a tuple r = (V, E, Σ, l), where V 6= ∅ is a finite
set of nodes and E ⊆ V = {{v1, v2} ∈ {V × V }, v1 6= v2}
is a set of edges and l : V ∪ E → Σ is a label function.
The set of all labelled, undirected graphs is referred to as
G. A set of nodes {v1, . . . , vm} is a path between v1 and
vm, if {vi, vi+1} ∈ E, i ∈ {1, . . . , m − 1}. We only consider
connected graphs here, i.e., there is a path between each
two nodes in the graph. The graph r = (V, E, Σ, l) is double
connected, if there exist two distinct paths between a pair
of nodes {vi, vj} ∈ E. A node v is adjacent to an edge e =
{e1, e2}, if v = e1 or v = e2. The number of distinct edges
that a node is adjacent to is called its degree. A subgraph
r′ of r is a subset of vertices of r and some edges of r with
both endpoints in r′, s.t. r′ is connected. We denote the
subgraph relation by ⊆. If r′ ⊆ r, then r′ is said to cover
r. This induces a partial order on graphs, the more-general-
than relation �: for any graphs r, r′, s,

r � r
′
, if r

′ ⊆ s ⇒ r ⊆ s.

The subset of r that a graph r covers is referred to as
the occurrences of r, its size as support of r in r, denoted
by supp(r, r). It is called open (closed), if for all s with
supp(r, r) = supp(s,r) it holds that r ⊆ s (r ⊇ s).

Backbone Refinement Classes.
Undirected, labelled graphs are partially ordered. Let P ⊆

G be the set of not double connected graphs with degree at
most 2 (paths) and let T ⊆ G be the set of not double
connected graphs (trees). It holds that

P ⊂ T ⊆ G.

Let p = {v1, . . . , vm} ∈ P be a path, then its sequence is
defined as the string l(v1)l((v1, v2)) . . . l((vm−1, vm))l(vm),
obtained by concatenating node and edge labels along the
path. Every tree t ∈ T has a backbone b(t), which is defined
as the longest path p ⊆ t with the lowest sequence according
to a lexicographic ordering (described by Nijssen and Kok
[8]). A (immediate) tree refinement of t ∈ T is an addition
of an edge and a node to t s.t. the result t′ is still not
double connected, i.e. t′ ∈ T . A backbone refinement is a
tree refinement that is backbone preserving, i.e. b(t′) = b(t).

We are considering the Backbone Refinement Classes of
b ∈ P , denoted by BBRCb = {BBRCb1 , . . . ,BBRCbn

}, where
each BBRCbi

is the set of trees that are backbone refine-
ments of each other with respect to b, i.e. for all r, r′ ∈
BBRCbi

it holds that

1. b(r) = b(r′) and

2. r � r′ or r′ � r.

(a) q1

(b) q2

(c) q3

Figure 1: Three example trees with the same back-
bone ’C1C2C1C2C1O1C’ (edges are labelled by bond or-
der) in bold. It holds that q1 �b q2 and q3 �b q2, but
neither q1 �b q3 nor q3 �b q1. Therefore, q1 and q3 are
not in the same Backbone Refinement Class.

We denote the backbone refinement class relation by �b.
Note that the classes are not disjoint for the same backbone
(but they are across different ones). For example, in Figure
1, q1 and q3 are in different classes, but q2 is in the respective
classes of both q1 and q3. The set of all backbone refinement
classes for a graph database R is called BBRCR. The objec-
tive of Backbone Refinement Class Representative Mining is
to find the most significant representative for each backbone
refinement class:

Definition: Backbone Refinement Class Representative
Mining (BBRC Mining).

Given a graph database R = (r, Σ, a), a user-defined min-
imum support m and user-defined minimum χ2 value p, for
all B ∈ BBRCR, find the most significant t ∈ B that is sig-
nificant, i.e. χ2(t, r) ≥ p, and frequent, i.e. supp(t,r) ≥ m.

The complexity of BBRC mining is upper-bounded by the
complexity of regular tree mining [8]. We will however show
that our approach decreases running times significantly for
practical applications.

1.2 Related Work
In the following, we review the literature for reducing so-

lution sets in graph mining. For the unsupervised setting,
i.e., when no target class is available, methods can only take
into account the support of features. For instance, the solu-
tion can be restricted to open (closed) subgraphs of various
types (see, e.g., the work of Yan and Han [14]). By defini-
tion, these techniques represent refinements with identical
occurrences by the most general (the most specific) pattern.
They can be easily integrated into graph mining with mini-
mum support.

Rückert and Kramer [10] presented a solution based on
occurrence lists, which aims for extensionally diverse sets of
structural features. Stochastic local search (SLS) is used to
optimize the dissimilarity of features, more specifically, to
minimize the dot product between occurrence vectors. The
main drawback of the method is the excessively long running
time of SLS to find small sets of diverse features.

The subset of closed subgraphs for which no frequent su-
pergraphs exist is called maximal (also known from version

space theory as the positive border). Hasan et al. [1] em-
ploy sparse representations of maximal frequent subgraphs
obtained by sampling. The approach aims for structural di-
versity of the mined features while enforcing a certain level
of representativeness at the same time.

The common strategy in most of the approaches is to rep-
resent a large part of frequent patterns by representatives
that form a summary of their occurrences. However, ignor-
ing the wealth of structural information may be a drawback
for three main reasons: First, this type of representation is
not directly related to structures but solely to their occur-
rence, which might prune important data. Second, it is not
necessary to distinguish between different subgraph types
(e.g., paths are refined to trees arbitrarily without chang-
ing the mining strategy). Third, occurrence summarization
methods are forced to mine a representative for any frequent
support level, which could impact performance. Hence, the
implementation of an explicitly structural pruning criterion
(defined intensionally) should yield a higher compression ra-
tio with less information loss and better running time.

To obtain diverse patterns homogeneously distributed in
structural space, we combine principles from correlated sub-
graph mining [2, 7] with a novel approach to ensure diversity
in structure rather than in subgraph occurrences. We com-
pare the method to an occurrence summarization approach
(in this case to open fragments) in terms of feature count,
information load, and representativeness.

2. METHODS

2.1 Statistical metric pruning
Pruning by minimum frequency can be solved with depth

first search methods. N.B.: If each subgraph occurred in
half of the graphs, a set of k subgraphs could in principle
distinguish 2k bins of graphs. Since a higher global minimum
frequency raises frequencies in at least one target class as
well, it leverages a subgraph’s discriminative potential for
classification tasks.

Subgraphs that are correlated significantly with the target
class can be filtered with statistical measures. Due to the
absence of both monotonicity and antimonotonicity, signif-
icance values cannot be used for antimonotonic (nor mono-
tonic) pruning directly, however, the convexity of the χ2

function allows to derive a related measure for antimono-
tonic pruning.

In our work, this is done as initially suggested by Mor-
ishita and Sese [7], however, we use the χ2 distribution test
(checking the adherence of a variable to a given distribution)
instead of the independence test (checking the statistical in-
dependence of variables). In the following, we briefly outline
our use of the χ2 distribution test and its upper bound for
pruning.

q all

active y m

inactive x − y n − m

Σ x n

Table 1: Contingency table for subgraph q.

For a given subgraph q, a 2 × 2 contingency table counts
the occurrences, depending on whether the covered com-
pounds are active or inactive (see Table 1). More specif-

ically, y is defined as |{r ∈ r | covers(q, r) ∧ a(r)}|, the
count for active compounds containing q, x is defined as
|{r ∈ r | covers(q, r)}|, the count for all compounds con-
taining q. During calculation of χ2 significance values, a
weight x

n
is assigned to every candidate pattern q, corre-

sponding to its support. Subgraphs with low support get a
low weight, while subgraphs with high support are unlikely
to deviate much from the sample mean. The regions of in-
teresting patterns therefore lie “somewhere in the middle”.

It holds that 0 ≤ y ≤ n and 0 ≤ x − y ≤ n. We are
now able to check whether the distribution of q differs sig-
nificantly from the distribution of all subgraphs. The χ2

d

function for distribution testing is defined as

χ
2
d(x, y) =

(y − xm

n
)2

xm

n

+
(x − y − x(n−m)

n
)2

x(n−m)
n

, (1)

(see the work of Morishita and Sese [7]). Following their
notation, we use x(q) and y(q) to emphasize the dependency
of x and y on q. They showed that, for any subgraph q, x(q)
and y(q) allow to calculate an upper bound for the χ2

d value
of q′, for all refinements q′ with q � q′:

χ
2
d(x(q′), y(q′)) ≤ max { χ

2
d(y(q), y(q)), χ

2
d(x(q) − y(q), 0) }

Therefore, the upper bound measure is antimonotonic and
may be used for pruning the search space with fragment re-
finement methods. Bringmann et al. [2] demonstrated the
application to graph mining while comparing the expressive-
ness of different subgraph types (paths, trees, and graphs).
In the following, this pruning technique with a static, user-
defined upper bound threshold is referred to as static upper
bound pruning.

2.2 Dynamic Upper Bound Pruning

Enumeration scheme.
The partial order P ⊂ T ⊆ G of graphs allows for par-

titioning the subgraph mining process into three different
phases or levels according to the type of subgraph mined.
The approach proposed here is concerned only with the set
T . Thus, no refinement yields a double connected graph and
we only consider path and tree refinements.

We modified the graph miner Gaston [8] to support BBRC
mining2. Two specific properties allow for an efficient BBRC
mining implementation on top of Gaston:

• Predominantly, modern graph miners enumerate sub-
graphs canonically. For the implementation of the
Minimum DFS code used in gSpan see also Yan and
Han [13]. Gaston uses a similar canonical code repre-
sentation for graphs that enables checking for allowable
path and tree refinements in constant time. Specif-
ically, no refinement is enumerated twice, e.g., q2 in
Figure 1 (for details, see the work of Nijssen and Kok
[8, 9]).

• Gaston first enumerates all frequent path refinements
P|R, and only thereafter starts enumerating all tree
refinements T \ P |R growing from all p ∈ P|R. This is
performed by using p as backbone of the innate tree,
i.e., by prohibiting backbone changes while applying
tree refinements recursively.

2We used version 1.1 (with embedding lists), see http://
www.liacs.nl/~snijssen/gaston/.

Algorithm 1. expand() function

Input: A tree qmax with significance χ2(qmax, r) > u above
the global user defined significance threshold u, a global user
defined minimum frequency m, a global variable updated =
true

Output: The most significant backbone refinement of
qmax, r.

1 function expand(Tree qmax, Float χ2(qmax, r)) {

2 If this.ImmediateT reeRefinements == ∅ {
3 print qmax

4 updated=false

5 }

6 foreach Tree q′ ∈ this.ImmediateT reeRefinements {
7 cmax = max(χ2(q′, r), χ2(qmax, r))
8 if χ2

u(q′, r) ≥ cmax {
9 if χ2(qmax, r) < χ2(q′, r) ∧ q′.frequency > m {
10 qmax = q′

11 χ2(qmax, r) = χ2(q′, r)
12 updated = true

13 }
14 q′.expand(qmax,χ2(qmax, r))
15 }
16 else {
17 if updated {
18 print qmax

19 updated = false

20 }
21 }
22 }

Figure 2: Implementation of backbone refinement
class mining via dynamic upper bound pruning.

Dynamic Upper Bound Adjustment.
Let u be the user defined minimum χ2 value. For any

frequent subtree q ⊆ r ∈ r, let χ2(q, r) and χ2
u(q, r) de-

note the χ2 value and upper bound value for q, respectively,
both found by the χ2 distribution test for q. Let umax(q) =
max{χ2(p, r)|p �b q}, the highest χ2 value seen so far in
this backbone refinement class. Then, if umax(q) > u, u

may be increased to umax(q), since we only search for the
maximum class element (dynamic upper bound adjustment).

Every path p satisfying the user defined minimum fre-
quency and significance constraint serves as backbone. The
search starts with the longest —i.e., non-refinable —paths
and subsequently backtracks to the shorter ones. The algo-
rithm for mining the representatives of p’s refinement classes
using dynamic upper bound pruning is shown in Figure 2.
The procedure is invoked as p.expand(p,χ2(p, r)).

Lines 2-5 output the maximum element, if no further re-
finements are available. Otherwise, for every refinement on
the same level, a new class is instantiated for every refine-
ment q′. In line 7, cmax, the maximum χ2 value seen so
far (including q′) is calculated. Line 8 then implements dy-
namic upper bound pruning by checking q′’s upper bound
value against cmax. If it is lower, the search is truncated
and the maximum at that point is output (lines 16-20). Oth-
erwise, it is updated and the iteration continues.

Figure 3 visualizes the refinement process for tree q2 from

(a) q2 (b) Paths a, b, c

Figure 3: Backbone Refinement Classes for paths a,
b, and c.

Figure 1(b). It shows how the three different non-refinable
paths in q2 are used as backbones while the structure is ex-
plored. The paths are marked bold and all carbon node
labels have been made explicit. The borders of the back-
bone refinement classes are outlined, their sizes are given in
brackets. Specifically,

• BBRCc contains two backbone refinement classes cor-
responding to the exclusive inclusion of either edge 1)
or 2). The two classes comprise 4 subgraphs in total,
namely the backbone as well as the subgraphs q1, q2,
and q3 (see Figure 1).

• BBRCb contains two backbone refinement classes cor-
responding to the exclusive inclusion of either edge 1)
or 3). The two classes include 4 subgraphs in total.

• BBRCa contains a single backbone refinement class
with 2 subgraphs.

The class members are enumerated by subjecting a, b, and c

to the algorithm in Figure 2. After backtracking, the same
concept is applied to the other (shorter) paths in q2.

3. EXPERIMENTS
In this section we will investigate BBRCs in terms of

running time, feature count and expressiveness. First, we
test on smaller structure-activity relationship (SAR) data.
Then, we proceed with large-scale testing on the largest la-
belled dataset of structures tested so far. All calculations
were carried out on an 8 processor 2.4 GHz Intel Xeon sys-
tem with 16G of RAM running Linux 2.6.24.

3.1 Descriptor Computation and Predictivity
We evaluated four types of fragment descriptors according

to feature count, running time, predictive accuracy as well
as to sensitivity and specificity for the detection of active
compounds. The four types are:

1. All Linear Fragments

2. Significant Trees: all trees that are frequent and have
a minimum χ2 significance of 95 %.

SM RC MoC MuC
No No No No

1. Lin. Frag. 48,259 86,300 49,816 70,802
2. Sign. Trees 27,093 94,991 22,395 29,970
3. Open Trees 8,062 4,569 1,937 5,122
4. BBRC Repr. 2,715 5,183 3,083 3,636

Table 2: Comparison of feature set sizes for All Lin-
ear Fragments, Significant Trees and BBRC repre-
sentatives.

3. Open Trees: the most general representatives of all
trees with the same occurrences from 2.

4. BBRC Representatives: the most significant represen-
tatives of the backbone refinement classes from 2.

It should be pointed out that 3. and 4. form a summariza-
tion of the features in 2. For the tree-shaped descriptors
(2.-4.), we employed a minimum frequency of 6 to avoid ex-
cessive numbers of subgraphs, which is well below 1 % of the
data set size in all cases. For the linear subgraphs (1.), we
applied no minimum frequency and no significance thresh-
old. However, refinement was stopped at frequency 1, i.e.,
a fragment with single occurrence was included in the set of
fragments but not further refined.

We used four chemical datasets obtained from the Car-
cinogenic Potency Database (CPDB)3, version 08/04/29:
Salmonella Mutagenicity (SM, 388 active / 810 compounds),
Rat Carcinogenicity (RC, 459 active / 1145 compounds),
Mouse Carcinogenicity (MoC, 428 active / 927 compounds)
and Multicell Call (MuC, 553 active / 1067 compounds).

Fragment types 1., 2., and 4. were calculated with the
proposed approach. For the open trees (3.), we used the
method by Bringmann et al. [2].4

The mined subgraphs were evaluated in a leave-one-out
cross-validation. For each fold, significance value calcula-
tion and feature selection were done from scratch to avoid
information flow between folds. Prediction was performed
with a nearest-neighbor technique, using Tanimoto similar-
ity, where each substructural feature was quantified by its
χ2 significance value [3]. A training compound was selected
as neighbor, if its similarity to the query structure exceeded
0.3 (this cut-off value was used as default throughout our
experiments), and its contribution to the prediction was
weighted by its similarity. If no neighbor could be iden-
tified, no prediction was made. Otherwise, a minimum of
five neighbors was used. Besides the actual classification,
a confidence value based on mean neighbor similarity was
calculated for every single prediction. Aromatic rings in
the structures were represented in Kekulé notation with al-
ternating single and double bonds (aromatic perception is
discussed in section 3.2).

3.1.1 Effectiveness

Table 2 compares the resulting fragment set sizes for the
different fragment types and Table 3 indicates the mining

3http://potency.berkeley.edu/cpdb.html
4The authors kindly provided us with a binary of their al-
gorithm sfgm, pointing out that it may not be optimized for
speed and uses a breadth-first search technique known to be
memory demanding.

times we obtained for BBRC representatives with differ-
ent statistical metric pruning techniques. More specifically,
those times correspond to BBRC mining using no statisti-
cal pruning, static upper bound pruning and dynamic upper
bound pruning, respectively. Mining times for open trees us-
ing sfgm were as follows: 1,899s (SM), 28,537s (RC), 1,744s
(MoC), and 2,594s (MuC).

Figure 4 summarizes the information from Tables 2 and 3
by mean values of relative feature count and running time
reduction across the different datasets.

Reduction

percentage

Lin. Frag. 100.00% 0.00% 0.00% 0.94261022

Sign. Trees 63.37% 15.85% 15.85% 0.9094428

Open Trees 8.28% 2.89% 2.89% 0.3069408

BBRC Repr. 5.74% 0.23% 0.23% 0

100.00%

63.37%

8.28% 5.74%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Lin. Frag. Sign. Trees Open Trees BBRC Repr.

(a) Feature count mean reduction

no pruning 100.00% 0.00% 0.00%

Stat. UB pruning 92.20% 3.02% 3.02%

Dyn. UB pruning 34.85% 9.66% 9.66%

100.00%

92.20%

34.85%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

no pruning Stat. UB pruning Dyn. UB pruning

(b) Runtime mean reduction

Figure 4: Mean values of Tables 2 and 3, taken over
the datasets SM, RC, MoC, and MuC.

These empirical findings suggest that fragment set sizes
may be reduced by 94 %, 91 % and 31 % through the use of
BBRC representatives compared to linear subgraphs, signif-
icant trees and open fragments, respectively. Furthermore,
the application of dynamic upper bound adjustment is as-
sociated with a reduction in running time by 63.34 % and
60.92 % compared to using no statistical pruning and static
upper bound pruning, respectively. Considering that open
trees cannot use dynamic upper bound adjustment, static
upper pruning applies to them (see also section 3.2.2 and
the work of Bringmann et al. [2]). The “no pruning” setting
corresponds to ordinary fragment search with only minimum
frequency as antimonotonic constraint, i.e., to the original
Gaston implementation. Performance comparisons in this
class-blind setting, e.g., to gSpan, can be found in the liter-
ature [9, 12].

To assess the amount of overhead incurred by our method,
running time analysis was performed by comparing its pro-
file to that of the original Gaston algorithm. The results
indicate that our algorithm is about 6% of the time con-
cerned with χ2 and upper bound calculations, and about 3%
with additional control overhead due to the more sophisti-

SM RC MoC MuC
Applies to s Fraction s Fraction s Fraction s Fraction

No statistical pruning 2.63 100.00% 21.23 100.00% 3.71 100.00% 5.17 100.00%
Static UB pruning Sign. & Open Trees 2.55 96.97% 21.11 99.43% 2.98 92.06% 4.76 93.85%

Dynamic UB pruning BBRC Repr. 0.44 16.73% 6.63 31.22% 2.13 57.41% 1.76 34.04%

Table 3: Comparison of running time for mining BBRC Representatives using different pruning techniques.

cated expand() routine. Since running time gains of over
60% were obtained, it may be concluded that the additional
effort is justified.

3.1.2 Predictivity

This section compares accuracy, sensitivity and specificity
of descriptors 1.-4. in a binary classification task. Sensi-
tivity (specificity) measures the proportion of target class
positives (target class negatives) which are correctly iden-
tified as such. Accuracy is the overall fraction of correct
predictions. The figures reported in this section are derived
as follows: all includes all unweighted predictions, AD (or
Applicability Domain predictions) considers the top 80 %
unweighted predictions as ranked by confidence [3], whereas
wt. includes again all predictions, but this time the con-
tribution of every prediction is weighted by its associated
confidence value. The rationale for this measure is that er-
rors of high-confidence predictions should be penalized more
heavily than errors of low-confidence predictions. Therefore,
wt. combines and aggregates both types of information into
one measure.

Table 4 compares the accuracy values of BBRC represen-
tatives to all linear fragments, significant trees, and open
significant trees. Table 4 shows that tree-shaped subgraphs
always perform better than linear subgraphs, whether for
all or AD predictions or for weighted accuracy. BBRC rep-
resentatives outperform open trees in 10 out of 12 cases.
The mean accuracy difference between BBRC representa-
tives and significant trees is -0.27 ±1.47, whereas it is 1.1 ±
1.44 compared to open trees and 2.77 ± 1.66 compared to
linear fragments, respectively. A paired t-test on the accu-
racy values revealed that BBRC representatives perform sig-
nificantly better than open trees (t = 2.65, df = 11, p-value
= 0.02267), while no significant difference between BBRC
representatives and the complete set of trees (t = 0.65,
df = 11, p-value = 0.5302) was observed. Figure 5 compares
the four different types of descriptors in ROC space, showing
the differences in sensitivity and specificity for the predic-
tion of active compounds. There is a trend for better val-
ues when tree-shaped fragments are used, clearly signalling
the higher information load present in those descriptors.
BBRC representatives seem to exhibit a lower false alarm
rate compared to open trees. Indeed, a paired t-test on the
false positive ratios confirmed that BBRC representatives
significantly improved on specificity (t = −4.60, df = 11,
p-value = 0.00077). A significant difference in sensitivity
could not be detected. All four test results were confirmed
with Wilcoxon signed rank tests [11].

We also evaluated backbone refinement class representa-
tives on the three datasets from the study of Rückert and
Kramer [10]. To render the results comparable, we also used
6 % of the dataset size as minimum frequency threshold. Af-
ter performing 10-fold cross-validation, we obtained the ac-

all AD wt. #feat. (time)
NCTRER 0.74 0.79 0.82 1,782 (0.65s)
Bloodbarr 0.72 0.75 0.84 616 (0.22s)
Yoshida 0.55 0.59 0.58 377 (0.16s)

Table 5: Accuracy table for datasets used in the
study of Rückert and Kramer [9]

curacies shown in Table 5. Apart from the Yoshida dataset,
the results seem to be competitive to the respective figures
from the original publication. In particular within the appli-
cability domain, results are very similar to those of the SLS
method. The table also gives the mean number of features
and the running time for feature calculation per fold. In
terms of running times, the method proposed here is much
faster, as the construction of the trie for the SLS method
typically takes a few minutes, whereas the SLS run itself
may take hours [10].

In summary, BBRC representatives exhibit a significantly
higher specificity compared to open trees, while overall accu-
racy seems to be competitive to significant trees. They are
more sparse than open trees (reducing feature count), and
dynamic upper bound adjustment is multiple times more ef-
fective than the static method used for open tree mining in
terms of running times.

3.2 Large-Scale Analysis
We employed publicly available large-scale databases to

assess several advanced aspects of BBRCs beyond running
time, feature count and predictivity. More precisely, we per-
formed experiments on parts of the NCI Yeast Anticancer
Drug Screen datasets5 (April 2002 release). This dataset
reports growth inhibition of yeast strains when exposed in-
dividually to a large number of compounds as compared to
solvent only.

• AC-One (stage 0): Total of 87,264 compounds, 12,068
active (growth inhibition of at least 70 % in at least 1
strain)

• AC-All (stage 0): Total of 87,264 compounds, 5,777
active (growth inhibition of at least 70 % in all strains)

• AC-All (stage 1): Total of 10,924 compounds at the
high dose (50 microM), 5,433 active (growth inhibition
at least 70 % in all strains)

To the best knowledge of the authors, AC-One (stage 0)
and AC-All (stage 0) are the largest labelled datasets that
have been considered in correlated graph mining. The analy-
sis investigates different minimum frequency thresholds and
the impact of aromatic perception, i.e., whether the miner

5http://dtp.nci.nih.gov/yacds/download.html

SM RC MoC MuC
all AD wt. all AD wt. all AD wt. all AD wt.

1. Lin. Frag. 75.0 77.8 83.0 63.7 67.0 77.5 67.6 72.7 79.9 69.3 72.4 79.6
2. Sign. Trees 74.6 80.7 86.8 64.4 70.0 81.8 73.3 75.7 83.7 71.9 75.6 83.5
3. Open Trees 75.5 80.6 84.5 64.5 68.7 80.0 71.5 74.4 80.8 70.2 73.5 81.3
4. BBRC Repr. 74.6 79.4 85.4 67.2 70.4 82.2 71.7 76.5 82.0 70.3 74.1 84.9

Table 4: Descriptor accuracy for the CPDB datasets, obtained with leave-one-out crossvalidation. Bold
figures indicate the best results.

(a) SM (b) RC

(c) MuC (d) MoC

Figure 5: ROC plots for the CPDB datasets comparing Significant Trees (black), BBRC Representatives
(dark gray), Open Trees (light gray) and All Linear Fragments (hollow).

uses special labels for carbons and edges that are part of
an aromatic ring, or whether Kekulé notation employing al-
ternating single and double bonds is used. All calculations
were carried out on the same computer as in section 3.

Section 3.2.1 gives an overview of dataset coverage and
BBRC class sizes, and in section 3.2.2 we report on a cross-
validation run using those large-scale data.

3.2.1 Dataset Coverage and Class Sizes

Given that BBRCs are partially ordered, it is likely that
their representatives occur more frequently than at mini-
mum frequency, since, in general, they are not the most
specific fragment of their respective classes. Ideally, this
should give a good coverage of the dataset with few descrip-
tors of a relatively high minimum frequency. Such a reduced
set would then allow for fast, memory saving computational
models as well as for interpretable representations of the
(de)activating substructures of a training set. In particular,
for use in a predictive model, it is necessary to assess the
coverage and representativeness of descriptors.

First, we examined the highest minimum frequency of 200
for the AC-One (stage 0) and AC-All (stage 0) datasets to
see how well they would cover the data set, i.e., assessed
numbers of descriptors per compound, and compared them
to the respective figures for a minimum frequency of 100.

It clearly can be observed that the mean coverage does not
change much. For instance, the AC-One (stage 0) dataset
with aromatic perception has a mean log value of 1.650 for a
minimum frequency of 200, and a mean log value of 1.673 for
a minimum frequency of 100. A comparison of the median
values (1.623 vs. 1.633) showed an even smaller difference
indicating a skew to the right for a minimum frequency of
100.

In contrast, the effects of missing aromatic perception
were much greater. The AC-One (stage 0) dataset with-
out aromatic perception has a mean log value of 1.878 for a
minimum frequency of 200 and a mean log value of 1.896 for
a minimum frequency of 100. Similar results were obtained
for the AC-All (stage 0) data (details omitted).

(a) BBRC size for minimum frequency 200

Figure 6: BBRC sizes for AC-One (stage 0)

The conclusion here is that a lower minimum frequency
does not increase coverage for the majority of compounds,
as it might be expected from the feature count differences

presented in the previous section. In contrary, the normal-
ity of the corresponding density curves (not shown) indi-
cate clearly that coverage is handled more appropriately by
the higher threshold. In this setting, for AC-One (stage 0)
[AC-All (stage 0)], the mean number of descriptors per com-
pound is about 101.63 ≈ 42.6 [101.61 ≈ 40.7] with aromatic
ring perception and about 101.91 ≈ 81.28 [101.82 ≈ 66.07]
without.

The higher coverage for the non-aromatic setting raises
the question whether this is an expression of low repre-
sentativeness, i.e., whether backbone refinement classes are
smaller for the non-aromatic setting. We assessed back-
bone refinement class sizes via static upper bound pruning,
thus putting any significant and frequent tree into exactly
one class and counting them. The frequency distribution
of classes with different sizes in Figure 6 shows clearly that
the non-aromatic setting produces far more classes of the
same size, and moreover, the mean class size is significantly
lower than for the aromatic setting (a skew to the right for
the non-aromatic setting). Therefore, class size is indeed
smaller, and this may be attributed to a lower expressive-
ness.

In summary, the method proved robust in terms of de-
scriptor coverage for the higher threshold, allowing for fast
mining with higher frequency thresholds. Moreover, the re-
sults provide additional evidence for the coverage capacity of
tree-shaped descriptors. Finally, the aromatic setting seems
to produce a more sparse and representative collection of
patterns.

3.2.2 Cross-validation

To conclude our experiments, we report on two large-scale
cross-validation runs, using aromatic perception. Since a
balanced dataset is vital for a nearest-neighbor approach,
and in view of the results from earlier sections, we extracted
a subset of AC-one (stage 0), composed of all actives and
an equal number of inactives sampled randomly from the
dataset (2*11,700 = 23,400 compounds). The second run,
on AC-All (stage 1), used all actives and inactives (in total,
5,248+5,300 = 10,548 compounds).

AC-one (stage 0) AC-all (stage 1)
Sign. Trees 1,190,763 291,729
Open Trees ? 216,206
Max. Trees 556,673 148,562
BBRC Repr. 31,450 14,381

Table 6: Feature counts for AC-One (stage 0) and
AC-All (stage 1)

We compared the number of BBRC representatives to the
feature counts of other summarization methods. This time
we investigated additionally the set sizes of maximum pat-
terns (the positive border as implied by the minimum fre-
quency and 95 % significance constraints; see also the work
by Hasan et al. [1]).

For AC-All (stage 1), the extraction of open trees with
sfgm took >10h, BBRC representatives took 1m13s. For
AC-one (stage 0), open trees did not finish, while BBRC
representatives took 4m52s.

Table 6 shows that BBRC representatives had a very con-
densed representation of below ≤ 5%; maximal and open

patterns achieved a reduction up to only ∼ 50%; thus, BBRC
representatives reduce feature counts much more drastically
for these large-scale datasets than for the smaller validation
datasets (see Section 3).

Indeed, BBRC representatives turned out to be the only
practically useful feature type for validation on the (quite
powerful) computer we used. A prediction included the
derivation of the training set similar to the query instance
based on features occurring in the compounds and the calcu-
lation of the prediction in the same fashion as in Section 3.
With open trees, we obtained impractical prediction times
of > 60s, whereas BBRC representatives gave a mean of 4.7s

and 11.1s, respectively. Also, RAM usage was unacceptable
with open trees. Table 7 shows the validation results we
obtained.

all AD wt.
AC-one (st. 0) 68.4 71.9 78.3
AC-all (st. 1) 67.7 71.2 77.5

Table 7: Validation results for AC-One (stage 0) and
AC-All (stage 1), using BBRCs

In summary, we consider the class of BBRC representa-
tives a promising candidate for large-scale structural datasets,
rendering them computationally feasible. Judging from our
results in section 3, we can also be quite confident about the
quality of predictions.

4. CONCLUSION
In the paper, we introduced backbone refinement classes

(BBRCs), a particularly useful class of subgraphs for min-
ing databases of chemical compounds. Due to their formal
properties, BBRCs can be mined efficiently and searched by
existing graph mining systems like Gaston with only minor
modifications. The overall method proves to be highly effi-
cient compared to mining significant and open trees, dramat-
ically reducing running time and number of features mined.

Moreover, the experimental results revealed that the ex-
pressiveness of backbone refinement class representatives is
significantly higher than that of open trees, because a lower
number of features is associated with better accuracy, mainly
due to higher specificity, reducing false alarms in classifica-
tion tasks. The mined tree structures form a sparse and
structurally diverse pattern collection. Their inter-entropy
seems to be beneficial for SAR systems using tree-shaped
features in that a large fraction of structurally similar fea-
tures are left out, which cannot be guaranteed by occurrence
summarization methods, such as open or closed subgraphs.

In our experiments on the largest labelled set of chemi-
cal compounds used so far in class-correlated graph mining,
we showed that BBRCs can be computed within reasonable
time and used in simple predictive learning schemes. In view
of the dramatic decrease in numbers, they may be also suit-
able for identifying so-called structural alerts, i.e., chemical
substructures that are thought to be particularly toxic.

5. ACKNOWLEDGEMENTS
The authors thank Björn Bringmann for providing a bi-

nary and friendly cooperation in dataset testing, and Ulrich
Rückert for providing datasets. The research was (partially)

supported by the EU seventh framework programme under
contract no Health-F5-2008-200787 (OpenTox).

6. REFERENCES
[1] M. Al Hasan, V. Chaoji, S. Salem, J. Besson, and

M. Zaki. Origami: Mining Representative Orthogonal
Graph Patterns. ICDM 2007. Seventh IEEE
International Conference on Data Mining, pages
153–162, Oct. 2007.

[2] B. Bringmann, A. Zimmermann, L. de Raedt, and
S. Nijssen. Don’t Be Afraid of Simpler Patterns. In
Proceedings 10th PKDD, pages 55–66.
Springer-Verlag, 2006.

[3] C. Helma. Lazy Structure-Activity Relationships
(lazar) for the Prediction of Rodent Carcinogenicity
and Salmonella Mutagenicity. Molecular Diversity,
pages 147–158, 2006.

[4] T. Horváth, J. Ramon, and S. Wrobel. Frequent
Subgraph Mining in Outerplanar Graphs. In KDD ’06:
Proceedings of the Twelfth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 197–206, 2006.

[5] K. Jahn and S. Kramer. Optimizing gSpan for
Molecular Datasets. In Proceedings of the Third
International Workshop on Mining Graphs, Trees and
Sequences (MGTS-2005), 2005.

[6] S. Kramer, L. De Raedt, and C. Helma. Molecular
feature mining in HIV data. In KDD ’01: Proceedings
of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages
136–143, New York, NY, USA, 2001. ACM.

[7] S. Morishita and J. Sese. Traversing Itemset Lattices
with Statistical Metric Pruning. In Symposium on
Principles of Database Systems, pages 226–236, 2000.

[8] S. Nijssen and J. N. Kok. A Quickstart in Frequent
Structure Mining can make a Difference. In KDD ’04:
Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 647–652, New York, NY, USA, 2004. ACM.

[9] S. Nijssen and J. N. Kok. Frequent Subgraph Miners:
Runtimes Don’t Say Everything. In Proceedings of the
International Workshop on Mining and Learning with
Graphs (MLG 2006, pages 173–180, 2006.

[10] U. Rückert and S. Kramer. Optimizing Feature Sets
for Structured Data. In Stan Matwin and Dunja
Mladenic, editors, 18th ECML. Springer, 2007.

[11] F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 1(6):80–83, 1945.

[12] M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen.
A Quantitative Comparison of the Subgraph Miners
MoFa, gSpan, FFSM, and Gaston. In Proceedings of
PKDD, pages 392–403, 2005.

[13] X. Yan and J. Han. gSpan: Graph-Based Substructure
Pattern Mining. In ICDM ’02: Proceedings of the 2002
IEEE International Conference on Data Mining
(ICDM’02), page 721, Washington, DC, USA, 2002.
IEEE Computer Society.

[14] X. Yan and J. Han. CloseGraph: Mining Closed
Frequent Graph Patterns. In KDD ’03: Proceedings of
the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 286–295,
New York, NY, USA, 2003. ACM.

