Hierarchical multi-label classification of ToxCast datasets

Nina Jeliazkova <u>nina@acad.bg</u> Vedrin Jeliazkov <u>vedrin@acad.bg</u> Ideaconsult Ltd., Sofia, Bulgaria

ToxCast Data Analysis Summit May 14-15, 2009 US EPA, Research Triangle Park, NC

Outline

Objective

- Study the possibility to correlate *in-vitro* data with ToxRefDB *in-vivo* test results, using the maximum amount of information available
- Derive prediction models for *in-vivo* toxicity endpoints
- Data Analysis
- Approach rationale
- Methods and experiments
- Conclusions

Data Analysis (*in-vivo* studies)

Mixed data type – numerical and nominal

- •Values in mg/kg/day
- •Inactive chemical-assay combinations are (indicated by a value of 1000000)
- •Preprocessing step : transform the data into nominal (label type) Active and Inactive

Missing data

- •Chemical-assay combinations not tested (indicated by NA)
- Preprocessing step : remove missing data (for the sake of simplicity)

Distribution of Active chemicals - a summary

Distribution of *in-vivo* toxicity endpoints

Distribution of Active chemicals - a

Chronic toxicity, Mouse

CHR_Mouse_Tumorigen CHR_Mouse_LungTumors CHR_Mouse_LiverTumors CHR_Mouse_LiverProliferativeLe.. CHR_Mouse_LiverNecrosis CHR_Mouse_LiverHypertrophy CHR_Mouse_KidneyPathology

= % Active = % Inactive

Chronic toxicity, Rat

CHR_Rat_Cholinesteraselnhibition CHR_Rat_KidneyNephropathy CHR_Rat_KidneyProliferativeLesi... CHR_Rat_LiverHypertrophy CHR_Rat_LiverNecrosis CHR_Rat_LiverNecrosis CHR_Rat_LiverTumors CHR_Rat_SpleenPathology CHR_Rat_TesticularAtrophy CHR_Rat_TesticularAtrophy CHR_Rat_TesticularTumors CHR_Rat_ThyroidHyperplasia CHR_Rat_ThyroidHyperplasia CHR_Rat_ThyroidTumors CHR_Rat_ThyroidTumors CHR_Rat_ThyroidTumors

Distribution of *in-vivo* toxicity endpoints

Developmental endpoints, Rat

DEV_Rat_Urogenital_Ureteric DEV_Rat_Urogenital_Renal DEV_Rat_Urogenital_Genital DEV_Rat_Trunk_SplanchnicViscera DEV_Rat_Trunk_BodyWall DEV_Rat_Skeletal_Cranial DEV Rat Skeletal Axial DEV_Rat_Skeletal_Appendicular DEV_Rat_PregnancyRelated_Mate.. DEV_Rat_PregnancyRelated_Emb... DEV_Rat_Orofacial_JawHyoid DEV_Rat_Orofacial_CleftLipPalate DEV_Rat_Neurosensory_Eye DEV_Rat_Neurosensory_Brain DEV_Rat_General_GeneralFetalP... DEV_Rat_General_FetalWeightRe... DEV_Rat_Cardiovascular_MajorVe.. DEV_Rat_Cardiovascular_Heart

% Active % Inactive

Developmental endpoints, Rabbit

DEV_Rabbit_Cardiovascular_Heart DEV_Rabbit_Cardiovascular_Major... DEV_Rabbit_General_FetalWeight... DEV_Rabbit_General_GeneralFeta... DEV_Rabbit_Neurosensory_Brain DEV_Rabbit_Neurosensory_Eye DEV_Rabbit_Orofacial_CleftLipPaL. DEV_Rabbit_Orofacial_JawHyoid DEV_Rabbit_PregnancyRelated_E.. DEV_Rabbit_PregnancyRelated_M... DEV_Rabbit_Skeletal_Appendicular DEV_Rabbit_Skeletal_Axial DEV_Rabbit_Skeletal_Cranial DEV_Rabbit_Trunk_BodyWall DEV_Rabbit_Trunk_SplanchnicYisc.. DEV_Rabbit_Urogenital_Genital DEV_Rabbit_Urogenital_Renal DEV_Rabbit_Urogenital_Ureteric

Active = % inactive

Distribution of *in-vivo* toxicity endpoints

Multi -generation studies

MGR_Rat_Adrenal MGR_Rat_Epididymis MGR_Rat_Fertility MGR_Rat_Gestationalin.. MGR_Rat_Implantations MGR_Rat_Kidney MGR_Rat_LactationPND... MGR_Rat_LitterSize MGR_Rat_LiveBirthPND1 MGR_Rat_Liver MGR_Rat_Mating MGR_Rat_Ovary MGR_Rat_Prostate MGR_Rat_Spleen MGR_Rat_Testis MGR_Rat_Thyroid MGR_Rat_Uterus MGR_Rat_ViabilityPND4

Distribution of Active chemicals - a summary

Data Analysis findings (*in-vivo* studies)

- •The Active/Inactive classes in ToxCast *in-vivo* data are highly unbalanced
 - •This is a potential problem for almost all learning algorithms
- •Any classification algorithm, with the
 - •Objective to maximize accuracy of the prediction
 - •Under the assumption that the data distribution of the training set is the same as the future data

...will hardly be able to improve the predictions over the trivial classifier "all data is from the majority class"

h	J48 pruned tree			
· ` `	: inactive (243.0/2.0)			
	=== Stratified cross-validation ===			
he	<pre>=== Summary === Correctly Classified Instances 00 177 %</pre>	241		
	Incorrectly Classified Instanc	2		
lected att Name: Di dissing: 0 o.	<pre>0.823 % Kappa statistic Mean absolute error Root mean squared error === Confusion Matrix ===</pre>	0 0.0164 0.0907		
1	inactive 241 Active 2			
85: DEV_R	abbit_Urogenital_Ureteric (Nom) Visualize All			
	inactive [241] 2			

Unbalanced classes - existing approaches

- Modify the balance:
 - Down sampling
 - Throw away data from the majority class
 - Over sampling
 - Add new points to the minority class (copy of the existing or new artificial ones)
- Modify the learning algorithms to treat classes differently
 - E.g. Cost sensitive classification

SMOTE - Synthetic Minority Oversampling Technique

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (2002) "SMOTE: Synthetic Minority Over-sampling Technique", Journal of Artificial Intelligence Research, Volume 16, pages 321-357.

- Generalizes the decision region for the minority class
- Generates new random instances of a given class, based on nearest neighbours
- Recognised as one of the best techniques
- Several extensions available
- Open source WEKA
 implementation available
- Disadvantages
 - Danger of over-generalization
 - Number of artificial examples fixed

- The algorithm:
 - For each minority data point A find 5 nearest minority class points
 - Randomly choose an example B out of the 5 closest points
 - Calculate the distance D between randomly chosen point and the current point
 - Randomly generate a number less than D
 - Generate a new data point C, such that it lies on the line between A and B and the distance between A and C is D.

The classification example revisited

J48 pruned tree

·					
NVS ENZ rCNOS <= 945971.200291					
ATG DR5 CIS <= 32.321051: Active (97.0)					
ATG DR5 CIS > 32.321051					
BSK BE3C hLADR <= 40: inactive (2.0)					
BSK BE3C hLADR > 40: Active (4.0)					
NVS_ENZ_rCNOS > 945971.200291: inactive (240.0/1.0)					
=== Stratified cross-validation ===					
=== Summary ===					
Correctly Classified Instances	339	98.8338 %			
Incorrectly Classified Instances	4	1.1662 %			
Kappa statistic	0.9721				
Mean absolute error	0.0152				
=== Confusion Matrix ===					
a b < classified as					
239 2 a = inactive					
2 100 b = Active					

Building a prediction model

- Selection of study and endpoint.
 - Chronic toxicity
 - Mouse, Rat
 - Developmental toxicity
 - Rabbit, Rat
 - Multi-generation toxicity
- Selection of a single endpoint in a classic setup effectively ignores the information about other endpoints within the same study.
 - Is it possible to use all study information available?

Multi-label classification

- Classic (single-label)
 - Classes are mutually exlcusive (e.g. Active vs. Inactive)
- Fuzzy classification
 - An instance can be member of several classes, with some probability or degree of uncertainty

Multi-label classification

- An instance can be a full member of multiple classes
- Typical for many domains:
 - Text documents classification
 - Scene recognition
 - Medical diagnosis
 - Toxicology ???

- Single label
 - CHR_Mouse_Tumorigen
 - Yes / No
- Fuzzy
 - CHR_Rat_CholinesteraseInhibition
 - P = 0.5
 - CHR_Rat_LiverTumors
 - P= 0.2
 - CHR_Rat_KidneyProliferativeLesions
 P = 0.3
- Multi-label

Label/ Chemical	Cholin- esterase Inhibition	Liver Tumors	Kidney Proliferative Lesions
Chemical 1	Yes	No	Yes
Chemical 2	Yes	Yes	Yes
Chemical 3	No	No	No

Building a model

- Data analysis predictors (*in-vitro* data)
 - High dimensional (>500 columns)
 - Mixed data type (numeric for active chemicals, nominal for inactive)
 - No missing data values
- Approach
 - Unsupervised
 - Clustering
 - Supervised
 - Classification or Regression?

- Why not Classification by Clustering
 - Predictive Clustering Trees
 Blockeel et al. Top-down induction of clustering trees. In Proc. of the 15th ICML, p.55-63, 1998
- Decision tree approach advantage
 - When unclear where to start use a Decision Tree ☺
 - Fast
 - Interpretable
 - Relevant features identified during the build process we can skip the feature selection step

Predictive Clustering Trees

Blockeel et al. Top-down induction of clustering trees. In Proc. of the 15th ICML, p.55-63, 1998

- The decision tree is hierarchy of clusters
- The top node corresponds to the cluster, containing all data, which is recursively partitioned into smaller clusters down the tree.
- The split at each node is selected with the objective to maximize reduction of intra-cluster variance, thus maximizing cluster homogeneity and improving predictive performance
- The variance is treated as a parameter (can be defined in different ways), resulting in (multi-label) classification trees or regression trees as special cases.
- If no test significantly reduce the variance, a leaf is created and is labeled with a prototype (representative instance)
- The prototype is also treated as a parameter and can have various definitions.

Predictive Clustering Trees

Hierarchical Predictive Clustering Trees

- Predictive Clustering Tree with a special definition of variance
- (mean squared distance between each instance label to the set mean label)
 - Class weights w(c) decrease with the hierarchy
- Advantages vs. separate trees for prediction of multiple classes
 - Identify features with high relevance for multiple classes
 - Hierarchy constraints
 - More efficient
 - Simpler models, if the classes are not independent
 - Learning from skewed distribution

$$\begin{aligned} \operatorname{Var}(S) &= \frac{\sum_{i} d(v_{i}, \overline{v})^{2}}{|S|} \\ d(v_{1}, v_{2}) &= \sqrt{\sum_{i} w(c_{i}) \cdot (v_{1,i} - v_{2,i})^{2}} \\ w(c) &= w_{0}^{\operatorname{depth}(c)} \\ 0 &< w_{0} < 1 \end{aligned}$$

Example hierarchy: 1. Top class 1.1. Subclass1 1.2. Subclass 2

Class vector [1., 1.1., 1.2.] Class membership [1, 0, 1]

Why hierarchical classification

- The classes form a hierarchy, i.e. A partial order needs to be defined, such that class C1< C when class C1 is a super-class of C
- ToxCast in-vivo toxicity endpoints are obviously related
- Different domain specific relationships can be defined

1.Target
1.1.Liver
1.1.1. Proliferative lesions
1.1.1.1 Neoplasms
1.2. Kidney
1.2.1. Proliferative lesions
1.2.1.1 Neoplasms
1.2.2. Non-proliferative lesions

1.Pathology
1.1. Proliferative
1.1.1. Neoplasms
1.1.1.1.Rat
1.1.2. Mouse
1.1.2. Non-neoplastic
1.1.2.1.Rat
1.1.2.2. Mouse
1.2. Non-Proliferative
1.2.1. Rat
1.2.2. Mouse

Open source Implementation - Clus

- Clus is a decision tree and rule induction system that implements the predictive clustering framework. This framework unifies unsupervised clustering and predictive modeling and allows for a natural extension to more complex prediction settings such as multi-task learning and multi-label classification.
- Clus is co-developed by the <u>Declarative Languages and</u> <u>Artificial Intelligence</u> group of the <u>Katholieke</u> <u>Universiteit Leuven</u>, Belgium, and the <u>Department of</u> <u>Knowledge Technologies</u> of the <u>Jožef Stefan Institute</u>, Ljubljana, Slovenia.
- Clus is free software (licensed under the GPL) and can be obtained from

– <u>http://www.cs.kuleuven.be/~dtai/clus/</u>

Experiments (1)

- Generate single-label prediction models
 - For all *in-vivo* endpoints, available in ToxCast,
 - Build a Predictive Clustering Tree, using *in*vivo data as predictors
- Generate multi-label prediction models
 - For each study/species combination
 - Generate combinations of 2 and 3 endpoints
 - Build a Predictive Clustering Tree, using *in*vitro data as predictors

Experiments (2 - balancing via SMOTE)

- Generate single-label prediction models
 - For all in-vivo endpoints, available in ToxCast,
 - Apply SMOTE as a pre-processing step
 - Build a Predictive Clustering Tree, using *in-vivo* data as predictors
- Generate multi-label prediction models
 - For all *in-vivo* endpoints, available in ToxCast
 - Generate combinations of 2 and 3 endpoints
 - Apply SMOTE as a pre-processing step
 - Build a Predictive Clustering Tree, using *in-vitro* data as predictors

Performance assessment

- Accuracy is not a good metric!
- Data mining terms
 - Precision = TP / (TP + FP)
 - Recall = TP / (TP + FN) = Sensitivity
- Toxicology terms
 - Sensitivity = TP / (TP + FN) = Recall
 - Specificity = TN/ (TN + FP)
- Receiver Operating Characteristic (ROC)
- Precision Recall curve (PRC)

Experiments (3 - hierarchical)

- Generate hierarchical multi-label prediction models
 - Specify an hierarchy
 - Match the hierarchy to a ToxRefDB assay
 - Build a decision tree, using *in-vitro* data as predictors
- Performance
 - Precision Recall curve (PRC)
 - Hierarchical accuracy

Rat Chronic/Cancer Toxicity models performance

Performance of single-label decision

Multi-label trees perform better on average, compared to the single-label tree

Performance of 2-label decision tree models for Rat Chronic Toxicity

Training Crossvaludation

Recall

Rat Chronic/Cancer Toxicity models performance (balancing via SMOTE)

Crossvaludation Training

Performance of 1-label decision trees models for Rat Chronic Toxicity (balanced via SMOTE)

Crossvalidation
 Training

Excellent performance with cross-validation!

Example: CHR_Rat_LiverNecrosis model (balancing via SMOTE)

Chronic toxicity, Rat

CHR_Rat_Cholinesteraselnhibi.. CHR_Rat_KidneyNephropathy CHR_Rat_KidneyProliferativeL... CHR_Rat_LiverHypertrophy CHR_Rat_LiverNecrosis CHR_Rat_LiverProliferativeLe... CHR_Rat_LiverTumors CHR_Rat_SpleenPathology CHR_Rat_TesticularAtrophy CHR_Rat_TesticularTumors CHR_Rat_ThyroidHyperplasia CHR_Rat_ThyroidHyperplasia CHR_Rat_ThyroidTumors CHR_Rat_Tumorigen

= % Active = % Inactive

10 fold crossvalidation performance performance:

Real\Predicted	Active	Inactive
Active	92.27%	7.75%
Inactive	9.83%	90.17%

Similar results for other endpoints

BSK_3C_MCP1 > 991125.999331 +--yes: ATG PPARd TRANS > 947562.256956 +--yes: ATG_RARa_TRANS > 6.24888 +--yes: ATG_M_06_CIS > 100.0 +--yes: [inactive] [153.0] +--no: CLZD_CYP2B6_24 > 22.136744 +--ves: [Active] [2.0] +--no: [inactive] [3.0] +--no: CLM_StressKinase_1hr > 164.7 +--yes: [inactive] [5.0] +--no: [Active] [4.0] +--no: ATG SREBP CIS > 33.0 +--yes: BSK_LPS_TNFa > 13.333333 +--yes: [Active] [37.0] +--no: [inactive] [4.0] +--no: [inactive] [15.0] +--no: ATG_Ahr_CIS > 100.0 +--ves: BSK 3C IL8 > 40.0 +--yes: BSK_BE3C_IL1a > 40.0 +--yes: BSK KF3CT TGFb1 > 40.0 +--yes: BSK_hDFCGF_EGFR > 40.0 +--yes: [Active] [149.0]: 149 +--no: BSK hDFCGF MMP1 > 40.0 +--yes: [inactive] [3.0] +--no: [Active] [6.0] +--no: [inactive] [3.0] +--no: ACEA LOC3 > 134474.22692 +--yes: [inactive] [7.0] +--no: [Active] [6.0] +--no: ACEA LOC2 > 33.113112 +--yes: [Active] [3.0] +--no: [inactive] [11.0] +--no: [inactive] [29.0]

Rat Chronic/Cancer Toxicity models performance (balancing via SMOTE)

Assay	Number of endpoints selected as relevant tests in all decision trees
ACEA	24
ATG	151
BSK	106
CLM	19
CLZD'	54
NCGC	4
NVS	24
Solidus	2

ACEA IC50 ACEA LOC2 ACEA LOC3 ACEA LOC4 ACEA LOC5 ACEA LOCdec ACEA_LOCinc ATG_Ahr_CIS ATG_AP_1_CIS ATG_AR_TRANS ATG BRE CIS ATG C EBP CIS ATG_CAR_TRANS ATG_CMV_CIS ATG_CRE_CIS ATG_DR4_LXR_CIS ATG_DR5_CIS ATG_EGR_CIS ATG ERA TRANS ATG ERE CIS ATG_ERRa_TRANS ATG_FoxA2_CIS ATG FXR TRANS ATG HIF1a CIS ATG HNF4a TRANS ATG_Hpa5_TRANS ATG_IR1_CIS ATG_ISRE_CIS ATG_LXRa_TRANS ATG_LXRb_TRANS ATG_M_06_CIS ATG_M_06_TRANS ATG M 19 TRANS ATG MRE CIS ATG NF kB CIS ATG NFI CIS ATG NRF1 CIS ATG NRF2 ARE CIS ATG_NURR1_TRANS ATG Oct MLP CIS ATG PBREM CIS ATG_PPARa_TRANS ATG PPARd TRANS ATG PPARg TRANS ATG PPRE CIS ATG PXRE CIS ATG RARA TRANS ATG RARb TRANS ATG_RARq_TRANS ATG_RORE_CIS ATG_RXRb_TRANS ATG_Sp1_CIS ATG SREBP CIS ATG STAT3 CIS ATG TCF b cat CIS ATG TGFb CIS ATG_VDRE_CIS ATG_Xbp1_CIS BSK_3C_hLADR BSK_3C_ICAM1 BSK_3C_IL8 BSK_3C_MCP1 BSK_3C_Proliferation BSK 3C Thrombomodulin BSK 3C uPAR BSK 3C VCAM1 BSK 3C Vis BSK 4H MCP1 BSK 4H Pselectin BSK 4H VCAM1 BSK_BE3C_hLADR BSK_BE3C_IL1a BSK_BE3C_IP10 BSK_BE3C_MIG BSK BE3C PAI1 BSK BE3C TGFb1 BSK_BE3C_tPA BSK_BE3C_uPA BSK_BE3C_uPAR BSK_hDFCGF_EGFR BSK hDFCGF IL8 BSK hDFCGF IP10 BSK hDFCGF MIG BSK_hDFCGF_MMP1

BSK_hDFCGF_PAI1 BSK hDFCGF Proliferation BSK hDFCGF VCAM1 BSK KF3CT IL1a BSK KF3CT MCP1 BSK KF3CT MMP9 BSK KF3CT TGFb1 BSK KF3CT TIMP2 BSK_KF3CT_uPA BSK_LPS_Eselectin BSK_LPS_MCSF BSK_LPS_PGE2 BSK_LPS_TissueFactor BSK_LPS_TNFa BSK LPS VCAM1 BSK_SAg_CD38 BSK_SAg_CD69 BSK_SAg_Eselectin BSK_SAg_MCP1 BSK_SM3C_MCP1 BSK SM3C Proliferation BSK_SM3C_TissueFactor CLM_CellLoss_72hr CLM_MicrotubuleCSK_72hr CLM MicrotubuleCSK Destabilizer 72hr CLM MitoMass 24hr CLM MitoMass 72hr CLM MitoMembPot 1hr CLM MitoMembPot 24hr CLM MitoMembPot 72hr CLM MitoticArrest 24hr CLM MitoticArrest 72hr CLM_OxidativeStress_24hr CLM StressKinase 1hr CLM_StressKinase_72hr CLZD_ABCB11_24 CLZD_ABCG2_6 CLZD_CYP1A1_24 CLZD_CYP1A1_48 CLZD_CYP1A1_6 CLZD CYP1A2 24 CLZD CYP1A2 48 CLZD CYP1A2 6 CLZD CYP2B6 24 CLZD_CYP2B6_48 CLZD_CYP3A4_24 CLZD_CYP3A4_48 CLZD_CYP3A4_6 CLZD_HMGCS2_48 CLZD_SULT2A1_24 CLZD_SULT2A1_48 CLZD_SULT2A1_6 CLZD_UGT1A1_24 NCGC_LXR_Agonist NCGC_PPARg_Agonist NCGC PXR Agonist human NCGC PXR Agonist rat NVS ADME hCYP1A1 NVS ADME hCYP1A2 NVS ADME hCYP2A6 NVS_ADME_hCYP2B6 NVS_ADME_hCYP2C9 NVS ADME hCYP2J2 NVS ADME hCYP3A4 NVS ADME hCYP3A5 NVS ADME rCYP2C11 NVS_ENZ_hBACE NVS_ENZ_hGSK3b NVS_ENZ_hPTPMEG2 NVS_ENZ_rabl2C NVS_ENZ_rAChE NVS_ENZ_rCNOS NVS_GPCR_hAdnRA2a NVS_GPCR_rAdr NVS GPCR rSST NVS IC hNNR NBung NVS NR hAR NVS NR hPXR NVS TR NVS TR rSERT Solidus P450

Mouse Chronic/Cancer Toxicity models performance

Performance of single-label decision tree models for mouse chronic toxicity

Crossvaludation
 Training

Performance of 2-label decision tree models for Mouse Chronic Toxicity

Performance of 3-label decision tree models for Mouse Chronic Toxicity

Crossvaludation
 Training

Experiments (3-label)

ROC of 3-label decision tree models for Mouse Chronic Toxicity

Crossvaludation
 Training

ROC of 3-label decision tree models for Rat Chronic Toxicity

Crossvaludation
 Training

Developmental Toxicity Models performance

Performance of single-label decision tree

Multi-label trees perform better on average, compared to the single-label tree

Performance of 2-label decision tree models for Rabbit Developmental Toxicity

Multigeneration Toxicity Models performance

Performance of single-label decision tree

Crossvalidation
 Training

Multi-label trees perform better on average, compared to the single-label tree

Conclusions (single/multi-label trees)

- Original dataset (unbalanced)
 - No successful models!
 - Performance drops significantly with cross validation
- Balanced dataset via SMOTE
 - Excellent results for one-label trees
 - Unclear how to apply SMOTE for multi-label models -

have to balance all classes instead of a single one!

- The performance of the multi-label classification is better when the classes are related
 - Simpler trees, features relevant for all classes

Hierarchical classification

Matching the endpoints to the hierarchy

CHR Rat LiverTumors = pathology.proliferative.neoplastic.rat CHR_Rat_LiverProliferativeLesions = pathology.proliferative.neoplastic.rat, pathology.proliferative.nonneoplastic.rat CHR Rat LiverNecrosis = pathology.non-proliferative.rat CHR Rat LiverHypertrophy = pathology.non-proliferative.rat CHR Rat KidneyNephropathy = pathology.non-proliferative.rat CHR_Rat_KidneyProliferativeLesions = pathology.proliferative.neoplastic.rat, pathology.proliferative.nonneoplastic.rat CHR_Rat_ThyroidProliferativeLesions = pathology.proliferative.neoplastic.rat , pathology.proliferative.nonneoplastic.rat CHR Rat ThyroidTumors = pathology.proliferative.neoplastic.rat CHR Rat ThyroidHyperplasia = pathology.proliferative.nonneoplastic.rat CHR Rat TesticularTumors = pathology.proliferative.neoplastic.rat CHR Rat TesticularAtrophy = pathology.non-proliferative.rat CHR Rat SpleenPathology = pathology.proliferative.neoplastic.rat, pathology.proliferative.nonneoplastic.rat CHR Rat Tumorigen = pathology.proliferative.neoplastic.rat CHR_Mouse_LiverTumors = pathology.proliferative.neoplastic.mouse CHR Mouse LiverProliferativeLesions = pathology.proliferative.neoplastic.mouse, pathology.proliferative.nonneoplastic.mouse CHR Mouse LiverNecrosis = pathology.non-proliferative.mouse CHR Mouse LiverHypertrophy = pathology.non-proliferative.mouse CHR_Mouse_KidneyPathology = pathology.proliferative.neoplastic.mouse, pathology.proliferative.nonneoplastic.mouse CHR Mouse LungTumors = pathology.proliferative.neoplastic.mouse CHR Mouse Tumorigen = pathology.proliferative.neoplastic.mouse

Experiments (4) Chronic/Cancer rodent toxicity (unbalanced dataset)

Experiments (4) Chronic/Cancer rodent toxicity (unbalanced dataset)

Hierarchical model : Chronic/Cancer rodent toxicity (unbalanced dataset)

Hierarchical Error Measures - AU(PRC)

pathology/proliferative/nonneoplastic/rat pathology/proliferative/nonneoplastic/mouse pathology/proliferative/neoplastic/rat pathology/proliferative/neoplastic/mouse pathology/proliferative/neoplastic pathology/proliferative/neoplastic pathology/proliferative/neoplastic pathology/non-proliferative/rat pathology/non-proliferative/mouse pathology/non-proliferative pathology/non-proliferative pathology/non-proliferative

Hierarchical model : Chronic/Cancer rodent toxicity (unbalanced dataset)

Hierarchical Error Measures - AU(ROC)

pathology/proliferative/nonneoplastic/rat pathology/proliferative/nonneoplastic/mouse pathology/proliferative/neoplastic/rat pathology/proliferative/neoplastic/mouse pathology/proliferative/neoplastic pathology/proliferative/neoplastic pathology/proliferative/neoplastic pathology/non-proliferative/rat pathology/non-proliferative/mouse pathology/non-proliferative pathology/non-proliferative pathology/non-proliferative

Training Crossvalidation

Conclusions (hierarchical model)

- The hierarchical model performs reasonably well on top level
- The unbalanced dataset most probably is the reason for the worse performance on the lower levels
- SMOTE balancing was not performed; need additional research how to balance multiple classes in a flat or hierarchical setting

Structural diversity

Addition of a set of structural fragments (from ToxCast ChemicalInfo files) to the *in-vitro* data doesn't make any difference;
The decision tree didn't select any of the structural alerts as relevant!

•Pairwise similarity matrix of Tanimoto coefficient between every two chemicals calculated by AmbitXT (<u>http://ambit.sourceforge.net</u>)

Summary

- Continuous *in-vitro* data and binary *in-vivo* data are used to derive predictive clustering trees of 3 types – single label, multi-label and hierarchical
- Multi-label trees on average perform better and are of smaller size, compared to single-label trees
- Modifying class balance is necessary in order to model ToxCast *in-vitro* vs. *in-vivo* data
- Balancing via SMOTE performs very well

Summary

- Data sparsity might be another factor for classification performance over the unbalanced datasets.
- The problem of sparse data, where small number of instances are responsible for a high error rate is known in Machine Learning as "<u>the problem with small disjuncts</u>"
- Thus, ignoring the sparse data areas is not a recommended approach.
- There is no a single remedy for this problem. Recommended approaches are instance-based (lazy) learning, oversampling towards the class with small disjuncts, combining decision trees and lazy learning, etc.
- The combination of noise and small disjuncts in a dataset is prohibitive for the performance.

Future work

- apply cost-sensitive classification instead of balancing for multi-label and hierarchical trees;
- explore hierarchical methods beyond decision trees;
- apply similar approaches to other datasets, e.g. in the framework of the recently launched EU-FP7 funded project Cadaster (http://www.cadaster.eu/)

Final words...

Modelling ToxCast dataset is challenging, but interesting and definitely promising!

• Acknowledgements:

- OpenTox project & Barry Hardy
- Ivelina Nikolova
- Prof. Boris Aleksiev
- Jan Struyf (Katholieke Universiteit Leuven, Belgium)

Thank you!

Questions?

