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Outline

• Objective
– Study the possibility to correlate in-vitro data with 

ToxRefDB in-vivo test results, using the maximum 
amount of information available 

– Derive prediction models for in-vivo toxicity endpoints

• Data Analysis
• Approach rationale
• Methods and experiments
• Conclusions



Data Analysis  (in-vivo studies)

•Mixed data type – numerical and nominal
•Values in mg/kg/day 
•Inactive chemical-assay combinations are (indicated by a value of 1000000 )
•Preprocessing  step : transform the data into nominal (label type) – Active and 
Inactive

•Missing data
•Chemical-assay combinations not tested (indicated by NA )
•Preprocessing step : remove missing  data (for the sake of simplicity)



Distribution of in-vivo toxicity endpoints



Distribution of in-vivo toxicity endpoints



Distribution of in-vivo toxicity endpoints



Data Analysis findings (in-vivo studies)

•The Active/Inactive classes in ToxCast in-vivo data are highly 
unbalanced

•This is a potential problem for almost all learning algorithms

•Any classification algorithm, with 
the

•Objective to maximize accuracy of the 
prediction
•Under the assumption that the data 
distribution of the training set is the 
same as the future data

…will hardly be able to improve the 
predictions over the trivial  classifier 
“all data is from the majority class”

J48 pruned tree
------------------
: inactive (243.0/2.0)

=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances    241        
99.177  %
Incorrectly Classified Instanc    2           
0.823  %
Kappa statistic                   0     
Mean absolute error               0.0164
Root mean squared error           0.0907
=== Confusion Matrix ===

a   b   <-- classified as
241   0 |   a = inactive
2   0 |   b = Active



Unbalanced classes – existing approaches

• Modify the balance:
– Down sampling

• Throw away data from the 
majority class

– Over sampling
• Add new points to the 

minority class (copy of the 
existing or new artificial 
ones)

• Modify the learning 
algorithms to treat 
classes differently
– E.g. Cost sensitive 

classification 



SMOTE  - Synthetic Minority Oversampling 
Technique

Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (2002) 
"SMOTE: Synthetic Minority Over-sampling Technique", 

Journal of Artificial Intelligence Research, Volume 16, pages 321-
357.

• Generalizes the decision 
region for the minority class

• Generates new random 
instances of a given class, 
based on nearest neighbours

• Recognised as one of the best 
techniques

• Several extensions available
• Open source WEKA 

implementation  available
• Disadvantages

– Danger of over-generalization
– Number of artificial examples 

fixed

• The algorithm:
– For each minority data point A find 5 nearest 

minority class points
– Randomly choose an example B out of the 5 

closest points
– Calculate the distance D between randomly 

chosen point and the current point 
– Randomly generate a number less than D
– Generate a new data point C, such that it lies on 

the line between A and B and the distance 
between A and C is D.



The classification example revisited

J48 pruned tree
------------------
NVS_ENZ_rCNOS <= 945971.200291
|   ATG_DR5_CIS <= 32.321051: Active (97.0)
|   ATG_DR5_CIS > 32.321051
|   |   BSK_BE3C_hLADR <= 40: inactive (2.0)
|   |   BSK_BE3C_hLADR > 40: Active (4.0)
NVS_ENZ_rCNOS > 945971.200291: inactive (240.0/1.0)
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances         339               98.8338 %
Incorrectly Classified Instances         4                1.1662 %
Kappa statistic                          0.9721
Mean absolute error                      0.0152
=== Confusion Matrix ===

a   b   <-- classified as
239   2 |   a = inactive
2 100 |   b = Active



Building a prediction model

• Selection of study and endpoint.
– Chronic toxicity

• Mouse, Rat

– Developmental toxicity
• Rabbit, Rat

– Multi-generation toxicity

• Selection of a single endpoint in a classic setup 
effectively ignores the information about other 
endpoints within the same study.
– Is it possible to use all study information available?



Multi-label classification

• Classic (single-label)
– Classes are mutually exlcusive 

(e.g. Active vs. Inactive)

• Fuzzy classification
– An instance can be member 

of several classes, with some 
probability or degree of 
uncertainty

• Multi-label classification
– An instance can be a full 

member of multiple classes
– Typical for many domains:

• Text documents 
classification 

• Scene recognition 
• Medical diagnosis
• Toxicology ???

• Single label
– CHR_Mouse_Tumorigen

• Yes / No

• Fuzzy
– CHR_Rat_CholinesteraseInhibition  

• P = 0.5
– CHR_Rat_LiverTumors

• P= 0.2
– CHR_Rat_KidneyProliferativeLesions  

• P = 0.3

• Multi-label 

Label/ 
Chemical

Cholin-
esterase 
Inhibition

Liver 
Tumors

Kidney
Proliferative
Lesions

Chemical 1 Yes No Yes

Chemical 2 Yes Yes Yes

Chemical 3 No No No



Building a model

• Data analysis - predictors 
(in-vitro data)
– High dimensional (>500 

columns)
– Mixed data type (numeric 

for active chemicals, 
nominal for inactive)

– No missing data values
• Approach

– Unsupervised
• Clustering

– Supervised
• Classification or Regression ?

• Why not Classification by 
Clustering
– Predictive Clustering Trees
Blockeel et al. Top-down induction of 

clustering trees. In Proc. of the 
15th ICML, p.55-63, 1998

• Decision tree approach 
advantage
– When unclear where to start 

use a Decision Tree 
– Fast
– Interpretable 
– Relevant features identified 

during the build process –
we can skip the feature 
selection step



Predictive Clustering Trees

Blockeel et al. Top-down induction of clustering trees. In Proc. of the 
15th ICML, p.55-63, 1998

• The decision tree is hierarchy of clusters
• The top node corresponds to the cluster, containing all data, which 

is recursively partitioned into smaller clusters down the tree.
• The split at each node is selected with the objective to maximize 

reduction of intra-cluster variance, thus maximizing cluster 
homogeneity and improving predictive performance

• The variance is treated as a parameter (can be defined in different 
ways), resulting in (multi-label) classification trees or regression 
trees as special cases.

• If no test significantly reduce the variance, a leaf is created and is 
labeled with a prototype (representative instance)

• The prototype is also treated as a parameter and can have various 
definitions.



Predictive Clustering Trees

Chemical Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6

CHR_Rat_CholinesteraseInhibition
204 11 14 100 0 0

CHR_Rat_KidneyNephropathy 189 14 17 1 50 0

CHR_Rat_KidneyNephropathy 195 16 15 1 100 30



Hierarchical Predictive Clustering Trees

• Predictive Clustering Tree 
with a special definition of 
variance

(mean squared distance between 
each instance label to the set 
mean label )
Class weights w( c) decrease with the 

hierarchy

• Advantages vs. separate trees 
for prediction of multiple 
classes
– Identify features with high 

relevance for multiple classes 
– Hierarchy constraints
– More efficient
– Simpler models, if the classes 

are not independent
– Learning from skewed 

distribution

Example hierarchy:
1. Top class
1.1.  Subclass1
1.2. Subclass 2

Class vector 
[1., 1.1., 1.2. ]
Class membership
[1, 0,  1 ]



Why hierarchical classification

• The classes form a hierarchy, i.e. A partial order needs to be 
defined, such that  class C1< C when class C1 is a super-class of C

• ToxCast in-vivo toxicity endpoints are obviously related
• Different domain specific relationships can be defined

1.Pathology
1.1. Proliferative
1.1.1. Neoplasms
1.1.1.1.Rat
1.1.1.2. Mouse
1.1.2. Non-neoplastic
1.1.2.1.Rat
1.1.2.2. Mouse
1.2. Non-Proliferative
1.2.1. Rat
1.2.2. Mouse

1.Target
1.1.Liver
1.1.1. Proliferative lesions
1.1.1.1 Neoplasms
1.2. Kidney
1.2.1. Proliferative lesions
1.2.1.1 Neoplasms
1.2.2. Non-proliferative 
lesions



Open source Implementation - Clus

• Clus is a decision tree and rule induction system that 
implements the predictive clustering framework. This 
framework unifies unsupervised clustering and 
predictive modeling and allows for a natural extension 
to more complex prediction settings such as multi-task 
learning and multi-label classification. 

• Clus is co-developed by the Declarative Languages and 
Artificial Intelligence group of the Katholieke 
Universiteit Leuven, Belgium, and the Department of 
Knowledge Technologies of the Jožef Stefan Institute, 
Ljubljana, Slovenia. 

• Clus is free software (licensed under the GPL) and can 
be obtained from 
– http://www.cs.kuleuven.be/~dtai/clus/



Experiments (1)

• Generate single-label prediction models
– For all in-vivo endpoints, available in 

ToxCast, 
– Build a Predictive Clustering Tree, using in-

vivo data as predictors
• Generate multi-label prediction models

– For each study/species combination
• Generate combinations of 2 and 3 endpoints

– Build a Predictive Clustering Tree, using in-
vitro data as predictors



Experiments (2 – balancing via SMOTE)

• Generate single-label prediction models
– For all in-vivo endpoints, available in ToxCast, 
– Apply SMOTE as a pre-processing step
– Build a Predictive Clustering Tree, using in-vivo

data as predictors
• Generate multi-label prediction models

– For all in-vivo endpoints, available in ToxCast
• Generate combinations of 2 and 3 endpoints

– Apply SMOTE as a pre-processing step
– Build a Predictive Clustering Tree, using in-vitro

data as predictors



Performance assessment

• Accuracy is not a good metric!
• Data mining terms

– Precision = TP / (TP + FP)
– Recall = TP / (TP + FN)   = Sensitivity

• Toxicology terms
– Sensitivity = TP / (TP + FN)  = Recall
– Specificity = TN/ (TN + FP)

• Receiver Operating Characteristic (ROC)
• Precision – Recall curve (PRC)



Experiments (3 - hierarchical)

• Generate hierarchical multi-label 
prediction models
– Specify an hierarchy
– Match the hierarchy to a ToxRefDB assay
– Build a decision tree, using in-vitro data as 

predictors
• Performance

– Precision – Recall curve (PRC)
– Hierarchical accuracy



MGR_Rat_LiveBirthPND1
REAL\PRED | inactive | Active |
-----------------------------------
inactive |      219 |      1 | 220

Active |       27 |      4 |  31
-----------------------------------

|      246 |      5 | 251
Accuracy: 0.888446
Cramer's coefficient: 0.293132

Attribute: MGR_Rat_LitterSize
REAL\PRED | Active | inactive |
-----------------------------------

Active |      5 |       40 |  45
inactive |      0 |      206 | 206

-----------------------------------
|      5 |      246 | 251

Accuracy: 0.840637
Cramer's coefficient: 0.305032

An example 4-label tree

NVS_NR_hAR > 5.51
+--yes: [inactive,inactive,inactive,inactive] [227.0,202.0,217.0,182.0]
+--no:  ATG_SREBP_CIS > 10.89

+--yes: [inactive,inactive,inactive,Active] [4.0,4.0,2.0,4.0]
+--no:  [Active,Active,Active,Active] [5.0,5.0,4.0,5.0]

GR_Rat_GestationalInterval
REAL\PRED | Active | inactive |
-----------------------------------

Active |      5 |       15 |  20
inactive |      0 |      231 | 231

-----------------------------------
|      5 |      246 | 251

Accuracy: 0.940239
Cramer's coefficient: 0.484516

[MGR_Rat_GestationalInterval, MGR_Rat_LitterSize,
MGR_Rat_LiveBirthPND1, MGR_Rat_ViabilityPND4]

MGR_Rat_ViabilityPND4
REAL\PRED | Active | inactive 

|
-----------------------------------

Active |      9 |       60 |  69
inactive |      0 |      182 | 

182
-----------------------------------

|      9 |      242 | 251
Accuracy: 0.760956
Cramer's coefficient: 

0.313202



Rat Chronic/Cancer Toxicity models 
performance

Multi-label trees perform better 
on average, compared to the 
single-label tree



Rat Chronic/Cancer Toxicity models 
performance (balancing via SMOTE)

Excellent performance with 
cross-validation!



Example: CHR_Rat_LiverNecrosis model 
(balancing via SMOTE)

BSK_3C_MCP1 > 991125.999331
+--yes: ATG_PPARd_TRANS > 947562.256956
|       +--yes: ATG_RARa_TRANS > 6.24888
|       |       +--yes: ATG_M_06_CIS > 100.0
|       |       |       +--yes: [inactive] [153.0]
|       |       |       +--no:  CLZD_CYP2B6_24 > 22.136744
|       |       |               +--yes: [Active] [2.0]
|       |       |               +--no:  [inactive] [3.0]
|       |       +--no:  CLM_StressKinase_1hr > 164.7
|       |               +--yes: [inactive] [5.0]
|       |               +--no:  [Active] [4.0]
|       +--no:  ATG_SREBP_CIS > 33.0
|               +--yes: BSK_LPS_TNFa > 13.333333
|               |       +--yes: [Active] [37.0]
|               |       +--no:  [inactive] [4.0]
|               +--no:  [inactive] [15.0]
+--no:  ATG_Ahr_CIS > 100.0

+--yes: BSK_3C_IL8 > 40.0
|       +--yes: BSK_BE3C_IL1a > 40.0
|       |       +--yes: BSK_KF3CT_TGFb1 > 40.0
|       |       |       +--yes: BSK_hDFCGF_EGFR > 40.0
|       |       |       |       +--yes: [Active] [149.0]: 149
|       |       |       |       +--no:  BSK_hDFCGF_MMP1 > 40.0
|       |       |       |               +--yes: [inactive] [3.0]
|       |       |       |               +--no:  [Active] [6.0]
|       |       |       +--no:  [inactive] [3.0]
|       |       +--no:  ACEA_LOC3 > 134474.22692
|       |               +--yes: [inactive] [7.0]
|       |               +--no:  [Active] [6.0]
|       +--no:  ACEA_LOC2 > 33.113112
|               +--yes: [Active] [3.0]
|               +--no:  [inactive] [11.0]
+--no:  [inactive] [29.0]

Real\Predicted Active Inactive

Active 92.27% 7.75%

Inactive 9.83% 90.17%

10 fold crossvalidation performance performance:

Similar results for other endpoints 



Rat Chronic/Cancer Toxicity models 
performance (balancing via SMOTE)

• ACEA_IC50   ACEA_LOC2   
ACEA_LOC3   ACEA_LOC4   
ACEA_LOC5   ACEA_LOCdec   
ACEA_LOCinc   ATG_Ahr_CIS   
ATG_AP_1_CIS   ATG_AR_TRANS   
ATG_BRE_CIS   ATG_C_EBP_CIS   
ATG_CAR_TRANS   ATG_CMV_CIS   
ATG_CRE_CIS   ATG_DR4_LXR_CIS   
ATG_DR5_CIS   ATG_EGR_CIS   
ATG_ERa_TRANS   ATG_ERE_CIS   
ATG_ERRa_TRANS   ATG_FoxA2_CIS   
ATG_FXR_TRANS   ATG_HIF1a_CIS   
ATG_HNF4a_TRANS   
ATG_Hpa5_TRANS   ATG_IR1_CIS   
ATG_ISRE_CIS   ATG_LXRa_TRANS   
ATG_LXRb_TRANS   ATG_M_06_CIS   
ATG_M_06_TRANS   
ATG_M_19_TRANS   ATG_MRE_CIS   
ATG_NF_kB_CIS   ATG_NFI_CIS   
ATG_NRF1_CIS   ATG_NRF2_ARE_CIS   
ATG_NURR1_TRANS   
ATG_Oct_MLP_CIS   ATG_PBREM_CIS   
ATG_PPARa_TRANS   
ATG_PPARd_TRANS   
ATG_PPARg_TRANS   ATG_PPRE_CIS   
ATG_PXRE_CIS   ATG_RARa_TRANS   
ATG_RARb_TRANS   
ATG_RARg_TRANS   ATG_RORE_CIS   
ATG_RXRb_TRANS   ATG_Sp1_CIS   
ATG_SREBP_CIS   ATG_STAT3_CIS   
ATG_TCF_b_cat_CIS   ATG_TGFb_CIS   
ATG_VDRE_CIS   ATG_Xbp1_CIS   
BSK_3C_hLADR   BSK_3C_ICAM1   
BSK_3C_IL8   BSK_3C_MCP1   
BSK_3C_Proliferation   
BSK_3C_Thrombomodulin   
BSK_3C_uPAR   BSK_3C_VCAM1   
BSK_3C_Vis   BSK_4H_MCP1   
BSK_4H_Pselectin   BSK_4H_VCAM1   
BSK_BE3C_hLADR   BSK_BE3C_IL1a   
BSK_BE3C_IP10   BSK_BE3C_MIG   
BSK_BE3C_PAI1   BSK_BE3C_TGFb1   
BSK_BE3C_tPA   BSK_BE3C_uPA   
BSK_BE3C_uPAR   BSK_hDFCGF_EGFR   
BSK_hDFCGF_IL8   BSK_hDFCGF_IP10   
BSK_hDFCGF_MIG   
BSK_hDFCGF_MMP1 

Assay Number of endpoints 
selected as relevant 
tests in all  decision 
trees

ACEA 24

ATG 151

BSK 106

CLM 19

CLZD' 54

NCGC 4

NVS 24

Solidus 2

BSK_hDFCGF_PAI1   
BSK_hDFCGF_Proliferation   
BSK_hDFCGF_VCAM1   BSK_KF3CT_IL1a   
BSK_KF3CT_MCP1   BSK_KF3CT_MMP9   
BSK_KF3CT_TGFb1   BSK_KF3CT_TIMP2   
BSK_KF3CT_uPA   BSK_LPS_Eselectin   
BSK_LPS_MCSF   BSK_LPS_PGE2   
BSK_LPS_TissueFactor   BSK_LPS_TNFa   
BSK_LPS_VCAM1   BSK_SAg_CD38   
BSK_SAg_CD69   BSK_SAg_Eselectin   
BSK_SAg_MCP1   BSK_SM3C_MCP1   
BSK_SM3C_Proliferation   
BSK_SM3C_TissueFactor   CLM_CellLoss_72hr   
CLM_MicrotubuleCSK_72hr   
CLM_MicrotubuleCSK_Destabilizer_72hr   
CLM_MitoMass_24hr   CLM_MitoMass_72hr   
CLM_MitoMembPot_1hr   
CLM_MitoMembPot_24hr   
CLM_MitoMembPot_72hr   
CLM_MitoticArrest_24hr   
CLM_MitoticArrest_72hr   
CLM_OxidativeStress_24hr   
CLM_StressKinase_1hr   
CLM_StressKinase_72hr   CLZD_ABCB11_24   
CLZD_ABCG2_6   CLZD_CYP1A1_24   
CLZD_CYP1A1_48   CLZD_CYP1A1_6   
CLZD_CYP1A2_24   CLZD_CYP1A2_48   
CLZD_CYP1A2_6   CLZD_CYP2B6_24   
CLZD_CYP2B6_48   CLZD_CYP3A4_24   
CLZD_CYP3A4_48   CLZD_CYP3A4_6   
CLZD_HMGCS2_48   CLZD_SULT2A1_24   
CLZD_SULT2A1_48   CLZD_SULT2A1_6   
CLZD_UGT1A1_24   NCGC_LXR_Agonist   
NCGC_PPARg_Agonist   
NCGC_PXR_Agonist_human   
NCGC_PXR_Agonist_rat   NVS_ADME_hCYP1A1   
NVS_ADME_hCYP1A2   NVS_ADME_hCYP2A6   
NVS_ADME_hCYP2B6   NVS_ADME_hCYP2C9   
NVS_ADME_hCYP2J2   NVS_ADME_hCYP3A4   
NVS_ADME_hCYP3A5   NVS_ADME_rCYP2C11   
NVS_ENZ_hBACE   NVS_ENZ_hGSK3b   
NVS_ENZ_hPTPMEG2   NVS_ENZ_rabI2C   
NVS_ENZ_rAChE   NVS_ENZ_rCNOS   
NVS_GPCR_hAdnRA2a   NVS_GPCR_rAdrRa2B   
NVS_GPCR_rSST   NVS_IC_hNNR_NBungSens   
NVS_NR_hAR   NVS_NR_hPXR   NVS_TR_hNET   
NVS_TR_rSERT   Solidus_P450 



Mouse Chronic/Cancer Toxicity models 
performance



Experiments (3-label)



Developmental Toxicity Models 
performance 

Multi-label trees perform better 
on average, compared to the 
single-label tree



Multigeneration Toxicity Models 
performance  

Multi-label trees perform better 
on average, compared to the 
single-label tree



Conclusions (single/multi-label trees)

• Original dataset (unbalanced)
– No successful models!
– Performance drops significantly with cross validation 

• Balanced dataset via SMOTE
– Excellent results for one-label trees
– Unclear how to apply SMOTE for
multi-label models –
have to balance all classes instead of a single one!

• The performance of the multi-label classification 
is better when the classes are related
– Simpler trees, features relevant for all classes



Hierarchical classification

Non-
proliferative

Pathology

Proliferative

Neoplasms Non-
neoplastic

MouseRatMouseRat

MouseRat

An example hierarchy to 
model rodent chronic/cancer 
endpoints



Matching the endpoints to the hierarchy

CHR_Rat_LiverTumors = pathology.proliferative.neoplastic.rat
CHR_Rat_LiverProliferativeLesions = pathology.proliferative.neoplastic.rat , 

pathology.proliferative.nonneoplastic.rat
CHR_Rat_LiverNecrosis = pathology.non-proliferative.rat
CHR_Rat_LiverHypertrophy = pathology.non-proliferative.rat
CHR_Rat_KidneyNephropathy = pathology.non-proliferative.rat
CHR_Rat_KidneyProliferativeLesions = pathology.proliferative.neoplastic.rat , 

pathology.proliferative.nonneoplastic.rat
CHR_Rat_ThyroidProliferativeLesions = pathology.proliferative.neoplastic.rat 

,pathology.proliferative.nonneoplastic.rat 
CHR_Rat_ThyroidTumors = pathology.proliferative.neoplastic.rat
CHR_Rat_ThyroidHyperplasia = pathology.proliferative.nonneoplastic.rat
CHR_Rat_TesticularTumors = pathology.proliferative.neoplastic.rat
CHR_Rat_TesticularAtrophy = pathology.non-proliferative.rat
CHR_Rat_SpleenPathology = pathology.proliferative.neoplastic.rat, pathology.proliferative.nonneoplastic.rat
CHR_Rat_Tumorigen = pathology.proliferative.neoplastic.rat
CHR_Mouse_LiverTumors = pathology.proliferative.neoplastic.mouse
CHR_Mouse_LiverProliferativeLesions = pathology.proliferative.neoplastic.mouse, 

pathology.proliferative.nonneoplastic.mouse
CHR_Mouse_LiverNecrosis = pathology.non-proliferative.mouse
CHR_Mouse_LiverHypertrophy = pathology.non-proliferative.mouse
CHR_Mouse_KidneyPathology = pathology.proliferative.neoplastic.mouse, 

pathology.proliferative.nonneoplastic.mouse
CHR_Mouse_LungTumors = pathology.proliferative.neoplastic.mouse
CHR_Mouse_Tumorigen = pathology.proliferative.neoplastic.mouse



Experiments  (4) Chronic/Cancer rodent 
toxicity (unbalanced dataset)

The data set is 
split into training 
and test sets 2:1 

Precision = TP / (TP + FP)
Recall = TP / (TP + FN)   = 
Sensitivity



Experiments  (4) Chronic/Cancer rodent 
toxicity (unbalanced dataset)

The data set is 
split into training 
and test sets 2:1 

Precision = TP / (TP + FP)
Recall = TP / (TP + FN)   = 
Sensitivity



Hierarchical model : Chronic/Cancer 
rodent toxicity (unbalanced dataset)



Hierarchical model : Chronic/Cancer 
rodent toxicity (unbalanced dataset)



Conclusions (hierarchical model)

• The hierarchical model performs reasonably well on top 
level

• The unbalanced dataset most probably is the reason for 
the worse performance on the lower levels

• SMOTE balancing was not performed; need additional 
research how to balance multiple classes in a flat or 
hierarchical setting



CHR_RAT_
Cholinesterase 
Inhibition (Active)

Structural diversity
•Addition of a set of structural fragments (from ToxCast ChemicalInfo 
files) to the in-vitro data doesn’t make any difference; 
•The decision tree didn’t select any of the structural alerts as relevant!

•Pairwise similarity matrix of Tanimoto coefficient between every two 
chemicals calculated by AmbitXT (http://ambit.sourceforge.net)

All chemicals CHR_Rat_LiverNecrosis 
(Active)

Lipinski Failures > 0
(77 structures)



Summary

• Continuous in-vitro data and binary in-vivo data are used 
to derive predictive clustering trees of 3 types – single 
label, multi-label and hierarchical

• Multi-label trees on average perform better and are of 
smaller size, compared to single-label trees

• Modifying class balance is necessary in order to model 
ToxCast in-vitro vs. in-vivo data

• Balancing via SMOTE performs very well



Summary

• Data sparsity might be another factor for classification 
performance over the unbalanced datasets.

• The problem of sparse data, where small number of instances 
are responsible for a high error rate is known in Machine 
Learning as “the problem with small disjuncts”

• Thus, ignoring the sparse data areas is not a recommended 
approach.

• There is no a single remedy for this problem. Recommended 
approaches are instance-based (lazy) learning, oversampling 
towards the class with small disjuncts, combining decision trees
and lazy learning, etc.

• The combination of noise and small disjuncts in a dataset is 
prohibitive for the performance.



Future work

• apply cost-sensitive classification instead of 
balancing for multi-label and hierarchical trees;

• explore hierarchical methods beyond decision 
trees;

• apply similar approaches to other datasets, e.g. in 
the framework of the recently launched EU-FP7 
funded project Cadaster 
(http://www.cadaster.eu/)



Final words…

• Modelling ToxCast dataset is challenging, but interesting 
and definitely promising!
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Thank you!

Questions?


