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Warning

• The analysis summary presented here is a 
very preliminary one carried out by several 
OpenTox partners from their initial access to 
the project data in April 2009.  No strong 
reliance on results and conclusions should be 
made at this point! 

• Strong interest in understanding and 
developing the collaboration opportunities 
existing between OpenTox and ToxCast during 
phase 2 of the ToxCast project



Presentation Outline

• About OpenTox

• Prediction of ToxRefDb in vivo data with existing models 
(including lazar and Toxtree)

• Correlations between chemical structures, biological activities 
(predicted by PASS) and in vitro and in vivo ToxCast data

• Application of Pre-Processing, Feature Selection and 
Classification procedures to ToxCast datasets

• Data Management and Web Services approaches for access and 
manipulation of ToxCast data

• Impact of ToxCast on OpenTox Development and REACH-
relevant risk assessment

• Recommendations and suggestions on datasets, assays and 
endpoints for ToxCast phase 2 data



About OpenTox

The EC-funded FP7 project ―OpenTox‖ commenced in 
September 2008 and is developing an Open Source-based 
integrating predictive toxicology framework that supports a 
unified access to toxicological data and (Q)SAR models.  
Initial research has defined the essential components of the 
framework architecture, approach to data access, schema 
and management, use of controlled vocabularies and 
ontologies, web service and communications protocols, and 
selection and integration of algorithms for predictive 
modeling.  Analyses of use cases is in progress and includes 
cases for REACH-relevant risk assessment, chemical 
categorization and prioritisation, drug development, and 
food safety evaluation, with the resulting requirements 
guiding framework design and initial application 
development.  

More Information at Opentox.org
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OpenTox – Current Workpackages

http://www.opentox.org/wiki/opentox/Framework_proposal


Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

No alerts for carcinogenic activity CHR_Mouse_Tumorigen Count

NO Active 35

YES Active 60

NO Inactive 64

YES Inactive 87

correct predictions

in green



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix 
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

Structural Alert for genotoxic 

carcinogenicity
CHR_Mouse_Tumorigen Count

NO Active 70

YES Active 25

NO Inactive 100

YES Inactive 51

correct predictions

in green



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

Structural Alert for nongenotoxic 

carcinogenicity
CHR_Mouse_Tumorigen Count

NO Active 85

YES Active 10

NO Inactive 138

YES Inactive 13

correct predictions

in green



ToxCast Set : Distribution of Compounds 

vs. Non-Hydrogen Atoms’ Amount

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

TOXCAST_309_0_MF.txt

10_MF.txt

MDDR 2003 Principle_MF.txt

roadmap_2008-01-28_MF.txt



ToxCast Set: Distribution of 

Compounds vs. Molecular Weights

Average MW = 302 Dalton



ToxCast Set: 157 Compounds Coincide with 

Molecules from PASS Training Set  



Carcinogenicity Prediction by PASS

With the trained PASS program we predicted carcinogenicity for 306 compounds from ToxRefDB. 

Four compounds that have two components were excluded from the prediction. 

For 71 compounds mouse data were not available; for 62 compounds rat data were not available.

NA TP TN FP FN Sensitivity Specificity Accuracy

CHR_Mouse_LiverTumors 71 31 108 41 64 0.33 0.72 0.57

CHR_Mouse_LungTumors 71 11 138 11 84 0.12 0.93 0.61

CHR_Mouse_Tumorigen 71 25 129 41 49 0.34 0.76 0.63

CHR_Rat_LiverTumors 62 8 159 28 58 0.12 0.85 0.66

CHR_Rat_TesticularTumors 62 12 133 101 7 0.63 0.57 0.57

CHR_Rat_ThyroidTumors 62 3 212 20 18 0.14 0.91 0.85

CHR_Rat_Tumorigen 62 8 184 46 15 0.35 0.80 0.76

NA - data not available ; TP - true positive; TN - true negative; FP - false positive; FN - false negative

Sensitivity – TP/(TP+FN);

Specificity – TN/(TN+FP);

Accuracy – (TP+TN)/(TP+TN+FP+FN



For more information on PASS Analysis please see supplementary 
information and visit their poster at the meeting: 

Abstract 53 

(Q)SAR and (Q)AAR analysis of ToxCast Dataset Using PASS and 
GUSAR approaches 

Vladimir Poroikov, Dmitry Filimonov, Alexey Zakharov, Alexey Lagunin, 

Sergey Novikov* 

Institute of Biomedical Chemistry of Rus. Acad. Med. Sci.; 

*A.N. Sysin Institute of Human Ecology and Environmental Health of 
Rus. Acad. Med. Sci., 10, Pogodinskaya Str., Moscow, 11912, Russia

More Information..

http://www.opentox.org/


lazar predictions of mouse 

carcinogenicity

lazar

ToxRefDb inactive active

inactive 111 40 151

active 66 29 95

177 69 246

Sensitivity 0.31

Specificity 0.74

Accuracy 0.57

Andreas Maunz1

Christoph Helma1,2

1) FDM Universität Freiburg  (D)
2) in-silico toxicology Basel (CH)



lazar prediction of mouse carcinogenicity 

within applicability domain

ToxRefDb inactiveactive

inactive 70 17 87

active 45 10 55

115 27 142

Sensitivity 0.182

Specificity 0.805

Accuracy 0.563

lazar

Andreas Maunz1

Christoph Helma1,2

1) FDM Universität Freiburg  (D)
2) in-silico toxicology Basel (CH)



• Poor sensitivity of lazar predictions and ToxCast 

carcinogenicity results

• Specificity increases for compounds within the 

applicability domain, sensitivity decreases

• CPDB/Toxcast carcinogenicity concordance 72 % 

(rat) and 76 % (mouse), low sensitivity (~ 40%)

Lazar observations



• Structural dissimarities between ToxCast and CPDB 

compounds: unlikely (in this case compounds within AD 

would perform better)

• Different experimental protocols/evaluation schemes: 

possible (low sensitivity of CPDB vs. ToxCast)

• Linear fragments miss crucial properties of ToxCast

structures: possible (improvements should be possible 

with more expressive descriptors, e.g. BBRC analysis 

from  Andreas Maunz)

• ToxCast compounds act by special mechanisms that are 

not covered by CPDB compounds: possible

Conclusions – possible explanations for 

prediction failures



Conclusions

• Linear fragments miss crucial properties of ToxCast

structures: possible (improvements should be 

possible with more expressive descriptors, e.g. BBRC 

from  A. Maunz)

• ToxCast compounds act by special mechanisms that 

are not covered by CPDB compounds: possible
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Large-Scale Graph Mining using Backbone Refinement Classes

C++ library implementation:

http://www.maunz.de/libfminer-doc

1) FDM Universität Freiburg  (D)
2) in-silico toxicology Basel (CH)
3) Technische Universität München (D)

Mining structurally diverse 2D-descriptors from large class-labelled graph databases.

Specialize on tree-shaped fragments!

• Efficient to mine.

• Considers branched substructures.

C-C(-O-C)(=C-c:c:c)

C-C(=C(-O-C)(-C))(-c:c:c)

C-C(=C-O-C)(-c:c:c)

Backbone:
c:c:c-C=C-O-C

Refinemen

t

Refinement

Class 1

Class 2

In KDD '09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

Andreas Maunz1, Christoph Helma1,2, and Stefan Kramer3:

BBRC-Representatives:

• Significantly improve accuracy in 

classification tasks compared to 

open/ closed fragments.

• Sensitivity >75% for 

carcinogenicity

• Drastically reduce feature set 

sizes and running times (dynamic 

vs. static upper bound pruning).

• 23,400 compounds in 

<5min, yielding 31,450 

descriptors.

• yield high descriptor coverage 

despite high min. frequencies.

Backbone Refinement Classes 

(BBRCs)

• Method: Backbone Refinements partition the 

search space structurally in contrast to 

open/closed fragments.

Mine most significant representative of classes



Sensitivity

• Typical example: DEV_Rat_General_GeneralFetal Pathology
(10-fold Crossvalidation) 

• Randomized, not balanced (n = 129 + 40): 

Acc: 84.94 % 
Spec: 94.52 % 
Sens: 43.50 % 

• Randomized, balanced by downsampling (n = 41+ 40): 

Acc: 77.78 % 
Spec: 63.42 % 
Sens: 92.50 % 

Classified: inactive active

207 12 inactive

27 13 active

Classified: inactive active

26 15 inactive

3 37 active



Preliminary evaluation of Toxcast Phase 1: sketching the landscape
Romualdo Benigni, Cecilia Bossa, Alessandro Giuliani, and Ann M. Richard 1

Istituto Superiore di Sanita‘ - Rome Italy; 1 US Environmental Protection Agency, Research Triangle Park

Characterization of Toxcast carcinogenicity data: Mechanisms of carcinogenesis

The SAs for carcinogenicity / mutagenicity in Toxtree code for genotoxic and 
(a few) nongenotoxic mechanism of carcinogenesis.

TheSAscorrelatewithcarcinogenicityinISSCANv3a(χ;152.6149=p<0.0001),
butnotinToxcast(mouse:χ0.7448=p;0.3881=rat:χ0.4368=p0.5086=).

TheSAscorrelatewiththeAmestestbothinISSCANv3a(χ;203.5227=p
(0.0003=p;12.88=χ)Toxcastand(0.0001>

Toxcast database appears to be different from the general carcinogenicity 

database (e.g., ISSCAN) in many respects. In particular, the lack of correlation 

between Toxcast carcinogenicity data, and both the SAs and the Ames test 

points to a poor presence in Toxcast of the mechanisms of carcinogenesis 

predominant in the general carcinogenicity database.

The Ames test is an experimental model for genotoxic carcinogenicity.

ItcorrelateswithcarcinogenicityinISSCANv3a(χ,93.3330=p<0.0001),
butnotinToxcast(mouse:χ,1.0012=p;0.3170=rat:χ,0.6808=p=
0.4093).

In Toxcast, the genotoxicity assay Greenscreen does not correlate 
neitherwithcarcinogenicity(mouse:χ,1.4535=p;0.2280=ratχ=
.(0.2318=p,1.4299=χ)testAmesthewithnor,(0.2934=p,1.1041



From the statistical analysis (Cluster and Principal Component Analysis, Stepwise Discriminant Analysis) of in 

vitro and in vivo toxicity assays, it appears that the in vivo toxicity measures correlate with rodent 

carcinogenicity to a level (around 20% explained variance) considerably higher than that of the in vitro

assays (5 to 10% explained variance).

The pattern of in vivo toxicity variables entered into the model has no direct link with, and explanatory 

power for the carcinogenicity process. On the contrary, they should be considered -as a whole- as probes for 

ADME effects typical of the whole animal.

The largest difference between in vivo and in vitro
assays is  specificity (X-axis, False Positive rate = 1 
– specificity). 

The in vitro assays have a very low specificity 
(many false positives). Thus, they point only to 
potential effects. 
The higher specificity of the in vivo toxicity assays 
can be attributed to their ability to discriminate the 
chemicals in terms of ADME characteristics (thus 
discriminating between potential and actual 
carcinogenicity). 

Do the Toxcast in vitro and in vivo results correlate with the Toxcast carcinogenicity data ? 
The general trend.

Romualdo Benigni, Cecilia Bossa, Alessandro Giuliani, and Ann M. Richard 1

Istituto Superiore di Sanita‘ - Rome Italy; 1 US Environmental Protection 

Agency, Research Triangle Park



Conclusions from ISSCAN Analysis and Comparisons

The Toxcast carcinogenicity data are different from the classic carcinogenicity database 

in many respects. This peculiarity demonstrates that yet, the chemical biological

interactions leading to carcinogenicity have not been sufficiently explored in large 

regions of the chemical space.

Thus the study of the Toxcast data may lead to new rules and structure alerts.

The overriding importance of in vivo phenomena in cancer has been confirmed. The in 

vitro assays appear to have quite a low explanatory and predictive power in respect to

rodent carcinogenicity. This result indicates that the basic cellular processes coded for 

by the in vitro assays, are limitedly correlated with the biology of carcinogenesis, since

they do not take into account crucial phenomena taking place at the level of organs and 

whole body organization.

The development of models for in vivo ADME phenomena should be considered as a 

priority.

More refined analyses are necessary to better qualify the present results. It should be 

emphasized that models providing mechanistic clues – and not only statistical

measures- are to be preferred.

Romualdo Benigni, Cecilia Bossa, Alessandro Giuliani, and Ann M. Richard 1

Istituto Superiore di Sanita‘ - Rome Italy; 1 US Environmental Protection 

Agency, Research Triangle Park



For more information on the ISS Analysis please 

visit their poster at the meeting:

Abstract 23 

Preliminary Evaluation of ToxCast Phase 1: Sketching 
the Landscape 

Romualdo Benigni, Cecilia Bossa, Alessandro Giuliani

Istituto Superiore di Sanita – Rome, Italy

More Information..

http://www.opentox.org/


Correlation Analysis (IST)

When an initial correlation analysis was carried out 

between the in vitro and in vivo datasets the 

following observations were made:

• 14 in vivo ToxRefDb endpoints had no correlated in 

vitro end points

• 118 in vitro assays had correlations with in vivo 

ToxRefDb endpoints 

(See supplementary information for details.)



SVM QSAR Models for the 

prediction of 

CHR_Mouse_KidneyPathology
The procedure:

• Only the compounds for which some information (numerical value) for CHR_Mouse_KidneyPathology end-point is 
included in the TOXRefDB are taken into account (246 instances)

• The class 0 was assigned to all 199 non-toxic compounds (value of 1000000 in the database), while the class 1 was 
assigned to the remaining 47 compounds. 

• The same procedure was followed for all in-vitro descriptors

• An arff file file was developed containing all the in-vitro and chemical descriptors and the end-point values for 246 
instances.

•The Weka library was used to select a subset among the 990 variables. Most algorithms failed, but the BestFirst
method with the CfsSubsetEval attribute evaluator selected 39 descriptors. All of them contain only discrete 0 or 1 
values.

•The data file containing only the 39 descriptors was used to develop an SVM model. The SVM method was validated 
by Leave-One-Out cross-validation and by splitting the data into training and validation files. Initially, we assumed 
the first 200 compounds as training examples and the remaining as test examples. We also used several random 
partitions into 200 training and 46 validation data was used. 

Work of Haralambos Sarimveis and Georgia Melagraki

National Technical Univeristy of Athen



SVM QSAR Models for the 

prediction of 

CHR_Mouse_KidneyPathology
The results using the linear kernel:

For the entire set:

======  Classification Statistics ======
Correctly Classified Molecules : 229 out of 246
Incorrectly Classified Molecules  : 17
Overall Success Rate : 93.0895%
Error Percentage : 6.910500000000001%
====== Confusion Matrix ======
*0* *1* <== Correct Class
196 14 | *0*
3 33 | *1*

====== Per-class Success Rates (%)  ======
Class 0 --> 98.492
Class 1 --> 70.213

Work of Haralambos Sarimveis and Georgia Melagraki

National Technical Univeristy of Athen



SVM QSAR Models for the 

prediction of 

CHR_Mouse_KidneyPathology
The results using the linear kernel:

Cross validation:

======  Classification Statistics ======
Correctly Classified Molecules : 210 out of 246
Incorrectly Classified Molecules  : 36
Overall Success Rate : 85.3658%
Error Percentage : 14.6342%
====== Confusion Matrix ======
*0* *1* <== Correct Class
197 34 | *0*
2 13 | *1*

====== Per-class Success Rates (%)  ======
Class 0 --> 98.995
Class 1 --> 27.659

Work of Haralambos Sarimveis and Georgia Melagraki

National Technical Univeristy of Athen



SVM QSAR Models for the 

prediction of 

CHR_Mouse_KidneyPathology
The results using the linear kernel:

For the validation set that contains the last 46 examples:

======  Classification Statistics ======
Correctly Classified Molecules : 36 out of 46 
Incorrectly Classified Molecules  : 10
Overall Success Rate : 78.26089999999999%
Error Percentage : 21.7391% 
====== Confusion Matrix ======
*0* *1* <== Correct Class
33 10 | *0*
0 3 | *1*

====== Per-class Success Rates (%)  ======
Class 0 --> 100.0
Class 1 --> 23.077

Work of Haralambos Sarimveis and Georgia Melagraki

National Technical Univeristy of Athen



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Cramer tree (threshold of 

toxicological concern)
– Cramer G. M., R. A. Ford, R. L. Hall, Estimation of Toxic Hazard - A Decision Tree Approach, J. Cosmet. 

Toxicol., Vol.16, pp. 255-276, Pergamon Press, 1978

Low (Class I) Intermediate (Class II) High (Class III)

9 5 305

~96% of ToxCast Phase I



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Verhaar scheme (toxicity mode 

of action)
– Verhaar H.J.M., Van Leeuven C., Hermens J.L.M., Classifying Environmental Pollutants. 1: Structure-

Activity Relationships for Prediction of Aquatic Toxicity, Chemosphere, Vol.25, No.4, pp.471-491, 1992.

Class 1 

(narcosis or baseline 

toxicity) 

Class 2

(less inert 

compounds) 

Class 3

(unspecific 

reactivity) 

Class 4

(compounds and 

groups of 

compounds 

acting by a 

specific 

mechanism) 

Class 5

(Not possible to 

classify according 

to these rules) 

1 5 27 1 284

~89% of ToxCast Phase I



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::START (Structural Alerts for Reactivity 

in Toxtree — biodegradation & persistence 

decision tree)
Class 1

(easily biodegradable chemical)

Class 2

(persistent chemical)

Class 3

(unknown biodegradability)

131 154 34

The START rulebase estimates potential biodegradability or environmental persistence, by using a 

series of Structural Alerts (SAs) in combination with a decision tree. If the substance contains 

degradable functional groups, it usually can be considered as having the potential to degrade in 

the compartments to which it partitions. Depending on the weight of evidence that can be 

gathered on the potential for degradation, a determination can be made as to whether a 

substance is persistent according to the Persistence and Bioaccumulation Regulations 

(Government of Canada 2000).

NOTE: New expt data on biodegradability of ToxCast set is needed to test predictions.



For more information on Classification work there is 
a talk at the meeting on Friday morning from Nina 

Jeliazkova:

Abstract 15 

Hierarchical Multi-label Classification of ToxCast
Datasets 

Nina Jeliazkova and Vedrin Jeliazkov

Ideaconsult Ltd., Angel Kanchev Str 4, 1000 Sofia, Bulgaria 

More Information on Classification Work..

http://www.opentox.org/


Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

lazar predictions, covered endpoints:

– Carcinogenicity: 
• Multi cell call

• Mouse

• Rat

– Salmonella Mutagenicity (Kazius/Bursi
dataset)

– Human Liver Toxicity

– Fathead minnow LC50

– Maximum recommended daily dose



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Many of the existing models perform poorly when 

predicting ToxRefDb in vivo data, especially in terms of 

―false negatives‖ and ―applicability domain‖;

• There is clear evidence that new models should be 

developed, taking into account the classes of chemicals in 

ToxRefDb as well as peculiarities of the in vitro data like 

complexity in data set, skewed distributions, etc.

• ToxRefDb currently does not provide data for some 

important endpoints like ―toxicity mode of action‖ or 

―biodegradibility‖; it would be nice if such data could be 

gathered and provided in the future.



Application of Pre-Processing, Feature Selection and 

Classification procedures to ToxCast datasets

• Need for feature selection, pre-processing 

and prediction / classification techniques 

that are suitable for:

– High dimensional data;

– Missing values;

– Analysis of rare events

• Most in-vitro data is distributed like ~10% active 

and 90% inactive



Data Management and Web Services approaches for 

access and manipulation of ToxCast data

• Data management

– Provide more convenient access than text files

– Provide easy access to different slices of the data (a module for 

Toxcast data RESTful access would be a nice example)

– Data exploration, visualization

– Ontology 

• Map ToxCast terms into an ontology or existing data formats 

• Example:
– CHR_Rat_Tumorigen

» is "Endpoint―

» is "Chronic Endpoint―

» is "Endpoint for All neoplastic lesions―

» target (any target)

» species rat

• Domain experts knowledge required



ToxCast Data Analysis

Before QSAR descriptors can be calculated reliably, chemical structures need to 

be checked for chemical correctness, ionization state, stereochemistry, 

consistency, duplicates, and conformation, etc.  Also the data needs to be 

checked for range and evenness of spread.

For high-throughput calculations and for novice users this process needs to be 

automated in a consistent and chemically-intelligent way.

The ToxCast samples highlight a number of issues, potential errors and 

inconsistencies, which could potentially affect a QSAR correlation.  A number of 

points are summarized in the supplementary slides by David Gallagher.

OpenTox services will automate data cleanup, integration and reduce time 

for dataset and run preparation as far as practical … and will strive to apply 

to new ToxCast datasets.



Collaboration, OpenTox Development and REACH risk 

assessment: OpenTox - CADASTER Collaboration

The FP7-funded CADASTER project (http://www.cadaster.eu/) will 

provide practical guidance to integrated risk assessment by carrying out 

a full hazard and risk assessment for industrial chemicals. The project 

will develop a Decision Support System that will be updated on a regular 

basis in order to accommodate and integrate emerging practices and 

procedures for alternative non-animal based testing methods. OpenTox

and CADASTER partners will collaborate closely so as to promote and 

develop common practices, standards and procedures in the area of in 

silico based predictive toxicology approaches responding to user 

requirements in the area of REACH-relevant risk assessment. The 

collaboration should enable the development of a leading platform 

supporting the safety evaluation and regulatory compliance needs of 

industry operating in the European marketplace.

http://www.cadaster.eu/


CADASTER

Goals:

Exemplify the integration of information, models, strategies for 

safety-, hazard-, risk assessment for large numbers of substances

Carry out “real” risk assessment for large numbers of substances 

according to the basic philosophy of REACH: < costs, animal 

testing, time

Exemplify how to increase non-testing information whilst 

quantifying and reducing uncertainty

See Poster 52,  Igor Tetko

EU project CADASTER: Case studies on the Development and 

Application of in-Silico Techniques for Environmental hazard and 

Risk assessment



CADASTERAim:

Provide full environmental hazard and risk assessment 

according to the REACH philosophy for chemicals belonging 

to 4 classes of emerging chemicals:

1 – Polybrominated diphenylethers (PBDE), typically class of hydrophobic 

chemicals that pose a threat to man and the environment.

2 - Perfluoroalkylated substances and their transformation products, like 

perfluoroalkylated sulfonamides, alkanoic acids, sulfonates. Persistent 

hydrophilic compounds that may be toxic for man and environment.

3 – Substituted musks/fragrances; a heterogenic group of chemicals of varying 

composition like substituted benzophenones, polycyclic musks, terpene

derivatives. Common emission pattern in the environment.

4 - Triazoles/benzotriazoles: increasingly used as pesticides and anti-

corrosives.



Attempt of Creation of Integral Parameter 

Characterized the Compound’s Hazard

Using dosage characteristics for all 75 end-points, experimental data for 

which were obtained in vivo, we calculated the ToxDose values for 283 

compounds:

Here: D is the LEL value; m is the number of end-points for a 

particular compound; n is the total number of tests.   



Distribution of ToxDose Values for 

Different End-Points 
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Results of PASS Training for Predicting 

Different Categories of ToxDose

No Num     IEP, % Activity Type

1 301 5.151 ToxCast

2 9 25.689 CHR_ToxDose < 1.0 mkM/kg

3 19 28.623 CHR_ToxDose < 3.16 mkM/kg

4 51 28.052 CHR_ToxDose < 10.0 mkM/kg

5 89 25.008 CHR_ToxDose < 31.6 mkM/kg

6 145 27.272 CHR_ToxDose < 100.0 mkM/kg

7 176 24.130 CHR_ToxDose < 316.0 mkM/kg

8 196 23.499 CHR_ToxDose < 1000.0 mkM/kg

9 15 33.091 CHR_ToxDose 0.316-3.16 mkM/kg

10 42 26.576 CHR_ToxDose 1.0-10.0 mkM/kg

11 70 28.502 CHR_ToxDose 3.16-31.6 mkM/kg

12 94 38.760 CHR_ToxDose 10.0-100.0 mkM/kg

13 87 33.645 CHR_ToxDose 31.6-316.0 mkM/kg

14 51 40.901 CHR_ToxDose 100.0-1000.0 mkM/kg

15 26 34.029 CHR_ToxDose 316.0-3160.0 mkM/kg

Num is the number of compounds in the training 

set; IEP is Independent Error of Prediction.
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from our initial evaluation 
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following slides
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Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

No alerts for carcinogenic activity CHR_Mouse_Tumorigen Count

NO Active 35

YES Active 60

NO Inactive 64

YES Inactive 87

correct predictions

in green



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 
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– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 
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Structural Alert for genotoxic 

carcinogenicity
CHR_Mouse_Tumorigen Count

NO Active 70

YES Active 25

NO Inactive 100

YES Inactive 51

correct predictions

in green



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

Structural Alert for nongenotoxic 

carcinogenicity
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YES Active 10
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Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

Potential S. typhimurium TA100 

mutagen based on QSAR
CHR_Mouse_Tumorigen Count

NO Active 94

YES Active 1

NO Inactive 146

YES Inactive 5

correct predictions

in green



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 
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C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN
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TA100 mutagen based on QSAR
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NO Active 87

YES Active 8

NO Inactive 132

YES Inactive 19

correct predictions
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Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
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YES Active 2
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Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
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YES Active 2
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Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

No alerts for carcinogenic activity CHR_Rat_Tumorigen Count

NO Active 36

YES Active 65

NO Inactive 62

YES Inactive 94

correct predictions
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Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN
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carcinogenicity
CHR_Rat_Tumorigen Count

NO Active 73

YES Active 28
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models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

Structural Alert for nongenotoxic 

carcinogenicity
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Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN
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CHR_Rat_Tumorigen Count

NO Active 100

YES Active 1
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Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 
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Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

Potential carcinogen based on 

QSAR
CHR_Rat_Tumorigen Count

NO Active 98

YES Active 3

NO Inactive 155

YES Inactive 1

correct predictions

in green



Prediction of ToxRefDb in vivo data with existing 

models (including lazar and Toxtree)

• Toxtree::Benigni / Bossa rulebase (for 

mutagenicity and carcinogenicity) 

confusion matrix
– The Benigni / Bossa rulebase for mutagenicity and carcinogenicity – a module of Toxtree‖, by R. Benigni, 

C. Bossa, N. Jeliazkova, T. Netzeva, and A. Worth. European Commission report EUR 23241 EN

Unlikely to be a carcinogen based 

on QSAR
CHR_Rat_Tumorigen Count

NO Active 98

YES Active 3

NO Inactive 153

YES Inactive 3

correct predictions

in green
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ToxCast Set : Distribution of Compounds 

vs. Non-Hydrogen Atoms’ Amount
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ToxCast Set: Distribution of 

Compounds vs. Molecular Weights

Average MW = 302 Dalton



ToxCast Set: 157 Compounds Coincide with 

Molecules from PASS Training Set  



PASS Training on CPDB Data

The procedure:

• The data from CPDB 2007 was used as the training set of PASS.

Activity Type Number IAP, %

Carcinogenic, mouse 424 73.1

Carcinogenic, mouse, liver 236 74.2

Carcinogenic, mouse, lung 106 74.9

Carcinogenic, rat 553 70.0

Carcinogenic, rat, liver 198 75.3

Carcinogenic, rat, testes 19 71.1

Carcinogenic, rat, thyroid gland 35 78.2

SAR Base information is presented:
.

IAP - Independent Accuracy of Prediction calculated by 

leave-one-out cross-validation procedure



Carcinogenicity Prediction by PASS

With the trained PASS program we predicted carcinogenicity for 306 compounds from ToxRefDB. 

Four compounds that have two components were excluded from the prediction. 

For 71 compounds mouse data were not available; for 62 compounds rat data were not available.

NA TP TN FP FN Sensitivity Specificity Accuracy

CHR_Mouse_LiverTumors 71 31 108 41 64 0.33 0.72 0.57

CHR_Mouse_LungTumors 71 11 138 11 84 0.12 0.93 0.61

CHR_Mouse_Tumorigen 71 25 129 41 49 0.34 0.76 0.63

CHR_Rat_LiverTumors 62 8 159 28 58 0.12 0.85 0.66

CHR_Rat_TesticularTumors 62 12 133 101 7 0.63 0.57 0.57

CHR_Rat_ThyroidTumors 62 3 212 20 18 0.14 0.91 0.85

CHR_Rat_Tumorigen 62 8 184 46 15 0.35 0.80 0.76

NA - data not available ; TP - true positive; TN - true negative; FP - false positive; FN - false negative

Sensitivity – TP/(TP+FN);

Specificity – TN/(TN+FP);

Accuracy – (TP+TN)/(TP+TN+FP+FN



New MNA Descriptors in ToxCast set 
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Accuracy of Carcinogenicity Prediction 

vs. the Number of New Descriptors
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QSAR Models for Rat’s Cholinesterase 

Inhibitors  

ID Num. R2 Q2 Fisher SD Variables L10%OCV

model 1 45 0.697 0.567 10.706 0.699 8 0.71

model 2 45 0.684 0.559 10.073 0.706 8 0.7

model 3 45 0.676 0.553 11.366 0.709 7 0.65

model 4 45 0.686 0.52 7.96 0.744 10 0.524



QSAR Models for Rat’s Cholinesterase 

Inhibitors 
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Attempt of Creation of Integral Parameter 

Characterized the Compound’s Hazard

Using dosage characteristics for all 75 end-points, experimental data for 

which were obtained in vivo, we calculated the ToxDose values for 283 

compounds:

Here: D is the LEL value; m is the number of end-points for a 

particular compound; n is the total number of tests.   



Distribution of ToxDose Values for 

Different End-Points 
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Results of PASS Training for Predicting 

Different Categories of ToxDose

No Num     IEP, % Activity Type

1 301 5.151 ToxCast

2 9 25.689 CHR_ToxDose < 1.0 mkM/kg

3 19 28.623 CHR_ToxDose < 3.16 mkM/kg

4 51 28.052 CHR_ToxDose < 10.0 mkM/kg

5 89 25.008 CHR_ToxDose < 31.6 mkM/kg

6 145 27.272 CHR_ToxDose < 100.0 mkM/kg

7 176 24.130 CHR_ToxDose < 316.0 mkM/kg

8 196 23.499 CHR_ToxDose < 1000.0 mkM/kg

9 15 33.091 CHR_ToxDose 0.316-3.16 mkM/kg

10 42 26.576 CHR_ToxDose 1.0-10.0 mkM/kg

11 70 28.502 CHR_ToxDose 3.16-31.6 mkM/kg

12 94 38.760 CHR_ToxDose 10.0-100.0 mkM/kg

13 87 33.645 CHR_ToxDose 31.6-316.0 mkM/kg

14 51 40.901 CHR_ToxDose 100.0-1000.0 mkM/kg

15 26 34.029 CHR_ToxDose 316.0-3160.0 mkM/kg

Num is the number of compounds in the training 

set; IEP is Independent Error of Prediction.



Correlation between the in vivo

and in vitro data 

1 2 3 4 5 6 7 8 9

1 ToxDose_mkM 1

2 ACEA_ED -0.003 1

3 ATG_ED 0.094 0.253 1

4 BSK_ED 0.043 0.358 0.322 1

5 CLM_ED 0.201 0.418 0.608 0.404 1

6 CLZD_ED -0.007 0.054 0.247 0.094 0.229 1

7 NCGC_ED 0.109 0.225 0.467 0.269 0.399 0.184 1

8 NVS_ED 0.260 0.137 0.394 0.230 0.443 0.198 0.272 1

9 Solidus_ED 0.083 0.182 0.235 0.221 0.347 0.095 0.181 0.332 1



lazar Analysis –

confusion matrix 

comparisons of lazar 

predictions with 

ToxRefDb in vivo data

Supplementary Information
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Rat carcinogenicity

lazar

ToxRefDb inactive active

inactive 120 36 156

active 80 21 101

200 57 257

Sensitivity 0.21

Specificity 0.77

Accuracy 0.55



Rat carcinogenicity within AD

lazar

ToxRefDb inactive active

inactive 58 12 70

active 40 5 45

98 17 115

Sensitivity 0.11

Specificity 0.83

Accuracy 0.55



Rat carcinogenicity Toxcast/CPDB

CPDB

ToxRefDb inactive active

inactive 21 2 23

active 8 5 13

29 7 36

Sensitivity 0.38

Specificity 0.91

Accuracy 0.72



Mouse carcinogenicity

lazar

ToxRefDb inactive active

inactive 111 40 151

active 66 29 95

177 69 246

Sensitivity 0.31

Specificity 0.74

Accuracy 0.57



Mouse carcinogenicity within AD

lazar

ToxRefDb inactive active

inactive 70 17 87

active 45 10 55

115 27 142

Sensitivity 0.18

Specificity 0.8

Accuracy 0.56



Mouse carcinogenicity Toxcast/CPDB

CPDB

ToxRefDb inactive active

inactive 22 0 22

active 10 9 19

32 9 41

Sensitivity 0.47

Specificity 1

Accuracy 0.76



Toxcast PHASE I: in-vivo data 

(ToxRefDB)

Modelling with Backbone 

Refinement Class Descriptors

Andreas Maunz1

Christoph Helma1,2

1) FDM Universität Freiburg  (D)
2) in-silico toxicology Basel (CH)



Data Preprocessing

• 320 Toxcast PHASE I chemicals on 76 

rodent endpoints (ToxRefDB)

• Inactive chemical-assay combinations 

indicated by a value of 1,000,000; led to 

binary classification: 

• Used random order on chemicals

MG/KG/DAY 1,000,000 else

CLASSIFICATION inactive active



Descriptor Calculation

• Backbone Refinement Classes 1

• 2D-fragments (tree-shaped)

• Each fragment represents a class of 

structurally similar descriptors

• Minimum frequency: 2; significance 

treshold: 95%

1 A. Maunz, C. Helma, and S. Kramer: Large Scale Graph Mining using Backbone
Refinement Classes. In KDD '09: Proceedings of the 15th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining (to be published).



Sampling from Data

Problem: class distribution higly to fairly skewed
(more inactive instances). Possible solutions:

1. Downsampling: reduce no of inactive samples by
removing instances. Drawback: loss of inactive
instances.

2. Oversampling: add active samples multiple times. 
Drawback: possible presence of the same sample 
in prediction and test set, therefore overfitting.

3. Weighted Loss: increase training weight for active
instances. Drawback: limited effect.



Crossvalidation

• WEKA machine learning package on 

randomized data, converted to ARFF 

format

• Best results were obtained with balanced 

classes obtained by downsampling; mean 

overall accuracy of 72.5% (+- 10.2 %)

• Model: SMO (Support Vector Machine)



Sensitivity

• Typical example: DEV_Rat_General_GeneralFetal Pathology
(10-fold Crossvalidation) 

• Randomized, not balanced (n = 129 + 40): 

Acc: 84.94 % 
Spec: 94.52 % 
Sens: 43.50 % 

• Randomized, balanced by downsampling (n = 41+ 40): 

Acc: 77.78 % 
Spec: 63.42 % 
Sens: 92.50 % 

Classified: inactive active

207 12 inactive

27 13 active

Classified: inactive active

26 15 inactive

3 37 active



In Vitro In Vivo Dataset 

– Initial Correlation 

Analysis
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Qualitative correlations between HTS 

assays and ToxRefDB

Dataset: 20090303

Activities:

1000000 inactive

others active

Statistics: 

Fisher exact test 



14 ToxRefDB endpoints without 

correlated HTS assays (Fisher p < 0.05)
• CHR_Mouse_LungTumors

• DEV_Rabbit_General_GeneralFetalPathology

• DEV_Rabbit_Orofacial_CleftLipPalate

• DEV_Rabbit_Orofacial_JawHyoid

• DEV_Rabbit_Trunk_SplanchnicViscera

• DEV_Rabbit_Urogenital_Renal

• DEV_Rat_Cardiovascular_Heart

• DEV_Rat_Cardiovascular_MajorVessels

• DEV_Rat_General_GeneralFetalPathology

• DEV_Rat_Trunk_BodyWall

• MGR_Rat_Adrenal

• MGR_Rat_Mating

• MGR_Rat_Pituitary

• MGR_Rat_Prostate



118 HTS assays correlated with 

ToxRefDB endpoints (Fisher p < 0.05)

ABCB11_24

ABCB11_6

ABCB1_24

ABCB1_48

ABCB1_6

ABCG2_24

ABCG2_48

ABCG2_6

ACEA_IC50

ACEA_LOC2

ACEA_LOC3

ACEA_LOC4

ACTIN_24

ACTIN_6

ATG_M_32_TRANS

ATG_M_61_CIS

ATG_M_61_TRANS

ATG_NFI_CIS

ATG_NF_kB_CIS

ATG_NRF1_CIS

ATG_NRF2_ARE_CIS

ATG_NURR1_TRANS

ATG_Oct_MLP_CIS

ATG_PBREM_CIS

ATG_PPARa_TRANS

ATG_PPARd_TRANS

ATG_PPARg_TRANS

ATG_PPRE_CIS

ATG_PXRE_CIS

ATG_PXR_TRANS

ATG_RARa_TRANS

ATG_RARb_TRANS

ATG_RXRa_TRANS

ATG_RXRb_TRANS

ATG_SREBP_CIS

ATG_Sp1_CIS

ATG_TGFb_CIS

ATG_THRa1_TRANS

ATG_VDRE_CIS

ATG_VDR_TRANS

ATG_Xbp1_CIS

BSK_3C_Eselectin
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118 HTS assays correlated with 

ToxRefDB endpoints (Fisher p < 0.05)
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BSK_BE3C_MMP1

BSK_BE3C_PAI1



118 HTS assays correlated with 

ToxRefDB endpoints (Fisher p < 0.05)
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OpenTox: Sample Clean-up for QSAR 

David Gallagher



ToxCast Data Analysis

Before QSAR descriptors can be calculated reliably, chemical 

structures need to be checked for chemical correctness, ionization 

state, stereochemistry, consistency, duplicates, and conformation, 

etc.  Also the data needs to be checked for range and evenness of 

spread .

For high-throughput calculations and for novice users this process 

needs to be automated in a consistent and chemically-intelligent way.

The ToxCast samples highlight a number of issues, potential errors and 

inconsistencies, which could potentially affect a QSAR correlation.  

These are summarized next

OpenTox project will automate data clean up as far as practical



Number of molecules per chemical sample

5% (17 out of 320) of Toxcast samples contain more than one molecule 

Most QSAR descriptor algorithms are designed to work with a single 

molecule, however, some of the ToxCast chemical samples contain 

multiple molecules, additional water molecules, duplicate molecules, 

ions and ion pairs.  

This can produce unreliable results for some descriptor calculations 

depending on how the situation is handled (which molecule do you use? 

or use the average of all? or the sum of all, etc?)



Number of molecules per chemical sample

00066 2 acid and separate alcohol (should this be an ester?)

00104 2 includes methyl sulphate counter anion

00111 3 includes two Br- counter anions

00116 2 includes benzoate counter anion

00164 2 second molecule is HCl (should this be a hydrochloride?)

00179 2 includes Na+ counter cation

00190 4 two identical molecules, plus Zn and Mn cations

00191 2 includes Mn counter cation

00193 2 includes Cl- counter anion

00197 5 includes Na+ counter cation and three water molecules

00207 2 includes Zn++ counter cation

00229 3 neutral molecule, but includes two water molecules

00249 3 two identical anions and one Ca++ counter cation

00252 2 second molecule is HCl (should this be a hydrochloride?)

00259 2 includes Na+ counter cation

00270 2 includes Na+ counter cation

00314 2 includes Na+ counter cation



2D to 3D structure conversion

Most databases store molecules as 2D structures, however, many QSAR 

descriptors (e.g. quantum mechanics, 3D substructure searching) require 

reasonable 3D starting structures.  

Hence, 2D-3D conversion using standard rules and templates and 

saturation with hydrogen needs to be applied as a preprocessing step, 

followed by a molecular mechanics cleanup.

Geometry

Stereochemistry and chirality

Conformation

Ionization state



Other Issues 

Duplicate structures ?

Data from consistent mechanism classes or modes of action ?

Singletons and chemical space

limit the prediction reliability

Data skew ?

the data set needs to be checked for even spread (i.e data skewness is 

below a specified threshold, to avoid the potential for a misleadingly high r^2.

Descriptor parameterization and molecule size ?


