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In vivo toxicity is determined by xenobiotic toxicity, 
exposure and the modulating effects of environment 

Toxic potential 
(e.g. HCS) 

IN VIVO 

TOXICITY 
Exposure 

(dose, duration, PK) 

Effect of milieu 
(medium, plasma) 



CellCiphr™ High Content Toxicology 

High content screening (HCS) captures multiple 

mechanistic parameters covering a wide spectrum of 

cytopathological changes. 

CellCiphr™ comprises multiple cellular panels. 

 HepG2 (Human hepatocellular carcinoma) – 10 

endpoints; 1, 24 and 72h. 

Insight into toxicity towards cycling cells. 

Rat primary hepatocytes – 8 endpoints; 1, 24 and 48h. 

Primary cells with metabolic capability. 

Investigate hepatocyte-specific toxicities. 

H9c2 cardiomyocytes – 8 endpoints; 1, 24 and 72h 

Cardiomyocyte-specific toxicities. 



Example response image data 
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Ranking method – key features 

Key datum is the AC50:  the concentration at which response is 50% 

of that of a reference compound with high response against the 

endpoint. 

 

Method uses all AC50s for all reference compounds for a cell type.  

 

Weightings are applied to the AC50 values: 

Lower AC50s have greater weight (more toxic). 

Endpoints active for many compounds have lower weight (to 

reduce false positives). 

 

The basic model can be elaborated to include mechanistic effects, 

additional weighting etc. 

 

No reference to in vivo toxicity – based only on in vitro data 

 



Ranking method – example results 

Toxicity Rank HepG2 cells Primary Rat Hepatocytes
1 paclitaxel CCCP
2 amiodarone terfenadine
3 nifedipine chlorpromazine
4 etoposide fluoxetine
5 CCCP chloroquine
6 terfenadine troglitazone
7 chlorpromazine amiodarone
8 fluoxetine ketoconazole
9 propranolol propranolol
10 diethylstilbestrol haloperidol
11 haloperidol etoposide
12 ketoconazole diclofenac
13 chloroquine trazodone
14 troglitazone diethylstilbestrol
15 rosiglitazone nifedipine
16 quinidine dexamethasone
17 valproic acid quinidine
18 trazodone paclitaxel
19 diclofenac rosiglitazone
20 dexamethasone valproic acid
21 carbamazepine cyclophosphamide
22 acetaminophen furosemide
23 cyclophosphamide carbamazepine
24 furosemide acetaminophen

18/30 endpoints 

activated, all 

with sub-uM 

AC50s, many 

less than 10nM 

Only 2 endpoints 

activated with 

AC50s > 20 uM 

21/30 endpoints 

activated, with AC50s in 

range 1-400uM.  

Mitochondrial potential 

affected in the range 8-

10uM. Cell loss activated 

in the range 2-10uM  

19/30 endpoints 

activated with 

AC50s in the range 

0.1 – 60uM. Cell 

loss is activated in 

the range 0.1 – 

0.2uM. 

13/24 endpoints 

activated, with AC50s in 

the 0.1 – 10uM range. 

Mitochondrial potential 

affected in the range 1.6 

– 11uM. Apoptosis and 

cell loss activated at sub-

uM concentrations. 

6/24 endpoints 

activated in the 1 – 

1000uM range. 

9/30 endpoints 

activated with AC50s 

in the 40-250uM 

range. 

17/24 endpoints 

activated with AC50s 

in the 11-200uM 

range. 



Ranking method – some example results 

Paclitaxel: 

HepG2: 18/30 endpoints activated, all with sub-mM AC50s, many less than 10nM. 

Rat hepatocyte: only 2 endpoints activated, with AC50s > 20mM. 

CCCP: 

HepG2: 21/30 endpoints activated with AC50s in the range 1 - 1400mM. 

Mitochondrial potential affected in the range 8 – 10mM. Cell loss activated in the 

range 2 - 10mM. 

Rat hepatocyte: 13/24 endpoints activated, with AC50s in the 0.1 - 10mM range. 

Mitochondrial potential affected in the range 1.6 - 11mM. Apoptosis and cell loss 

activated at sub-mM concentrations. 

Troglitazone: 

HepG2: 9/30 endpoints activated with AC50s in the 40-250mM range. 

Rat hepatocyte: 17/24 endpoints activated with AC50s in the 11-200mM range. 

Etoposide: 

HepG2: 19/30 endpoints activated with AC50s in the range 0.1 - 60mM. Cell loss is 

activated in the range 0.1 – 0.2mM. 

Rat hepatocyte: 6/24 endpoints activated in the 1 - 1000mM range. 

 



Example:  
Identify Structure Toxicity Relationships 



Rank order risk of development by  
CellCiphrTM Safety  Risk 

Compound 
Trade 

Name 
CellCiphr

®
 Safety  

Risk 
CellCiphr

®
  

Ranking 
Commercial 

Status 

pioglitazone Actos
®

 0.414 Low 4 
Occasional reversible 

cholestatic hepatitis 

rosiglitazone Avandia
®

 0.551 Moderate 3 Withdrawn Europe 

ciglitazone n/a  0.825 High 1= Never used 

troglitazone Rezulin
® 

0.825 High 1= Withdrawn 



CellCiphr™ screen quantitatively relates toxic 

endpoints to one another 

These compounds cause apoptosis 

without DNA damage  

These compounds cause both  

apoptosis and DNA damage 

These  

compounds  

cause 

DNA  damage 

but not  

apoptosis 

 

These  

compounds  

cause neither  

DNA damage 

nor apoptosis 

AC50 for apoptosis at 24h (mM) 

A
C

5
0

 f
o

r 
D

N
A

 d
a

m
a

g
e

 a
t 

2
4

h
 (
m

M
) 



CellCiphrTM is a comprehensive toxicity screen:  
a big pharma case study 

CellCiphrTM results in primary rat hepatocyte were compared with 
endpoints for three preliminary in vitro screening assays. 

 

Between 31% and 41% of compounds that were negative in each of 
the preliminary screens showed a response in at least one 
CellCiphrTM endpoint. 

 

Less than 2% of compounds that were negative in the preliminary 
screens were also negative in all CellCiphrTM endpoints. 

 

The positive CellCiphrTM results were recorded as warnings that 
would require further investigation for any affected compound 
progressing down the pipeline. 



Summary of CellCiphr™ HCS 

 

CellCiphr™ HCS – generates quantitative data regarding: 

The relationships between triggering of toxic responses in a particular cell 
type. 

The time-courses of toxic response activation within a particular cell type. 

Data on toxic responses across multiple cell types. 

 

The CellCiphr™ system uses its extensive database for 
reference compounds to rank and score test compounds, 
based on the HCS AC50s. 



In vivo toxicity is determined by xenobiotic toxicity, 
exposure and the modulating effects of environment 

Toxic potential 
(e.g. HCS) 

IN VIVO 

TOXICITY 

Effect of milieu 
(medium, plasma) 

Exposure 
(dose, duration, PK) 



CellCiphr and exposure data are predictive of rat in 
vivo toxicity (big pharma case study) 

 

Relationships have been demonstrated between 

CellCiphr™ endpoints and specific in vivo toxicity 

markers in rat.  

 

These relationships are considerably strengthened 

when exposure (plasma Cmax) is taken into account. 



CellCiphr data can be used to predict in vivo human 
drug-Induced liver injury (DILI) 

Data from Xu et al (2008)*: 

• 39 compounds labelled as safe (wrt DILI). 

• 98 compounds labelled as causing DILI. 

 

Use CellCiphr panels 1 and 2 data. 

 

Single dose Cmax from the literature, or estimated where 

not available. 

 

AC50s scaled by appropriate Cmax. 

 

Build binary classification model to predict safe/DILI 
*Toxicological sciences 105, 97–105. 



Interpretation of a binary classification model 

Observed in vivo 

Safe DILI 

Predicted by 

model 

DILI False Positive True Positive 

Safe True Negative False Negative 

Sensitivity = fraction of toxic compounds detected = TP/(TP + FN). 

 

Specificity = fraction of compounds predicted to be toxic that are toxic 

                = TP/(TP + FP) 

 

 

 

 

 

 



CellCiphr data can predict in vivo human DILI 

Observed in vivo 

Safe DILI 

Predicted by 

model* 

DILI 5 49 

Safe 34 49 

Sensitivity = TP/(TP + FN) = 49/(49 + 49) = 50% 

 

Specificity = TP/(TP + FP) = 49/(49 + 5) = 91% 

 

 

 

*10-fold cross-validation on training set 

 

 

 

 

 

 

 

 

 



Look at the apparent false positives 

‘False positives’ are called safe by Xu et al, but predicted by 

the model to cause DILI:  

 

carbidopa – labelled as ‘most concern’ for DILI by FDA. 

levodopa – analogue of carbidopa. 

orphenadrine – safety of long-term use has not been 

established: periodic monitoring of blood, urine and 

liver function values is recommended (FDA 

labelling). 

idarubicin - chemotherapeutic, DNA intercalator, more 

potent in HepG2 then rat hepatocytes, expected to be 

toxic. 

pamidronate – in vivo decreases in serum alkaline 

phosphatase; renal toxicity. 



Predictive models for in vivo toxicity require 
predictive modelling of exposure 

 

A predictive screening approach should predict exposure 

(e.g. FA, Cmax, AUC), and its link to dose, removing the need 

for in vivo PK data. 

 

Physiologically-based pharmacokinetic (PBPK) models 

satisfy these requirements. 



PBPK models predict the fates of compounds in the 
body 

PBPK models are mathematical simulation models. 

 

They are devised to predict the fate(s) of compound(s) 
in the bodies of humans, and other animals. 

 

Their primary output is the change over time following 
dosing of relevant quantities. e.g. the concentration of a 
compound in the plasma and other tissues. 

 

Simple physchem and in vitro ADME data can be used 
as inputs. 



A conceptual physiological model used to predict  
somatic distribution and elimination 
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PBPK models inputs* for screening in drug discovery 

Input Property 

Hepatic microsomal intrinsic 
clearance (species-dependent) 

Fraction unbound in plasma 
(species-dependent) 

Blood:plasma ratio (species-
dependent) 

pKa(s)  

logP octanol/water 

Caco-2 permeability  

Solubility (buffered) 

Prediction of i.v. dose,  

p.o. dose exposure 

*Cloe® PK V2.1 



Prediction of Human Oral Dose Dose-Normalised Cmax 
by PBPK Model* 

*Cloe® PK V2.1.4 

Spearman rank = 0.78 

Mean-fold error = 2.65 



Prediction of Drug Distribution by PBPK Model* 

*Cloe® PK V2.1.4 

Elimination phase volume of distribution  

Steady state volume of distribution  



Summary of Exposure Prediction 

 

PBPK models can predict PK parameters, such as Cmax, 
AUC, that are suitable for scaling in vitro HCS toxicity data. 

 

They can also provide more direct predictions of exposure 
relevant for hepatotoxicity prediction, e.g concentrations in 
the hepatic portal vein, in liver, etc. 

 

Distribution volume predictions provide confidence that 
intracellular exposure is predictable. 



In vivo toxicity is determined by xenobiotic toxicity, 
exposure and the modulating effects of environment 

Toxic potential 
(e.g. HCS) 

IN VIVO 

TOXICITY 

Effect of milieu 
(medium, plasma) 
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(dose, duration, PK) 



Cytokine exposure alters steatosis at 48h in primary rat 
hepatocytes 



Summary of effect of milieu 

 

Xenobiotic effects, both in vitro and in vivo can be affected 
by the presence of bioactive molecules in the 
medium/plasma. 

 

This has been noticed in multiple CellCiphr™ HCS 
endpoints with cytokine exposure. 

 

The in vitro – in vivo interpretation of such data is in its 
infancy. 



Summary 

HCS captures multiple mechanistic parameters covering 
a wide spectrum of cytopathological changes. 

 

HCS data can be integrated, using machine-learning 
approaches to rank compounds on relative toxicity, 
compared to a reference database. 

 

Successful modelling of in vivo toxicity must account for 
exposure. 

 

Ongoing effort is to combine proven technologies – 
HCS, pattern recognition and PBPK modelling to predict 
in vivo toxicity from in vitro data. 


