

The Role of High Content Toxicology and *In Silico* Modelling in Identifying Toxic Liabilities

Simon Thomas

Head of Scientific Computing Cyprotex Discovery Ltd, Macclesfield, UK

In vivo toxicity is determined by xenobiotic toxicity, exposure and the modulating effects of environment

CellCiphr™ High Content Toxicology

- High content screening (HCS) captures multiple mechanistic parameters covering a wide spectrum of cytopathological changes.
- CellCiphr™ comprises multiple cellular panels.
- HepG2 (Human hepatocellular carcinoma) 10 endpoints; 1, 24 and 72h.
 - Insight into toxicity towards cycling cells.
- Rat primary hepatocytes 8 endpoints; 1, 24 and 48h.
 - Primary cells with metabolic capability.
 - Investigate hepatocyte-specific toxicities.
- - Cardiomyocyte-specific toxicities.

Example response image data

Mitochondrial Potential

P53 activation

Ranking toxicity based on a database of reference compounds

Ranking toxicity based on a database of reference compounds

Ranking method – key features

- ✓ Key datum is the AC₅₀: the concentration at which response is 50%.
 of that of a reference compound with high response against the endpoint.
- Method uses all AC₅₀s for <u>all</u> reference compounds for a cell type.
- Weightings are applied to the AC50 values:
 - Lower AC₅₀s have greater weight (more toxic).
 - Endpoints active for many compounds have lower weight (to reduce false positives).
- The basic model can be elaborated to include mechanistic effects, additional weighting etc.
- No reference to in vivo toxicity based only on in vitro data

Ranking method – example results

Toxicit	ty Rank	HepG2 cells	Primary Rat F	lepato	ocytes	
	1	paclitaxel	CCCP			
18/30 endpoints	2	amiodarone	terfenadine	1:	3/24 endpo	ints
· ·	3	nifedipine	chlorpromazine	2.0		050
activated, all	4	etoposide	fluoxetine	act	17/24 en	dpoints
04/00 and a sinta		CCCP	chloroquine	th ∉ ∫	activated w	•
19/30 endpoints		terfenadine	troglitazone	Mil '		
activated with	s in	chlorpromazine	amiodarone	affe	in the 11-	-200uM
		fluoxetine	ketoconazole	ung	rang	je.
AC50s in the range	tial —	propranolol	propranolol			
	2 8-	diethylstilbestrol	haloperidol	cel	6/24 endpo	oints
loce is activated in		haloperidol	etoposide	la	ctivated in t	the 1 –
	ated	ketoconazole	diciofenac		1000uM ra	
the range 0.1 –		chloroquine	trazodone		1000011111	inge.
9/30 endpoints		troglitazone	diethylstilbestrol			
activated with AC50s	S	rosiglitazone	nifedipine	X	Only 2 en	dpoints
in the 40-250uM		quinidine	dexamethasone		activate	
		valproic acid	guinidine			
range.		trazodone	paclitaxel		AC50s >	20 uM
1	9	diclofenac	rosiglitazone			
2	20	dexamethasone	valproic acid			
2	21	carbamazepine	cyclophosphamide			
2	22	acetaminophen	furosemide			
2	23	cyclophosphamide	carbamazepine			
2	24	furosemide	acetaminophen			

Ranking method – some example results

Paclitaxel:

- We HepG2: 18/30 endpoints activated, all with sub-μM AC50s, many less than 10nM.

- W HepG2: 21/30 endpoints activated with AC50s in the range 1 1400μM. Mitochondrial potential affected in the range $8 - 10\mu M$. Cell loss activated in the range 2 - 10μM.
- Rat hepatocyte: 13/24 endpoints activated, with AC50s in the 0.1 10μM range. Mitochondrial potential affected in the range 1.6 - 11μM. Apoptosis and cell loss activated at sub-µM concentrations.

Troglitazone:

- HepG2: 9/30 endpoints activated with AC50s in the 40-250μM range.
- Rat hepatocyte: 17/24 endpoints activated with AC50s in the 11-200

 μM range.

Etoposide:

- HepG2: 19/30 endpoints activated with AC50s in the range 0.1 60μM. Cell loss is activated in the range $0.1 - 0.2 \mu M$.
- Rat hepatocyte: 6/24 endpoints activated in the 1 1000
 μM range.

Example: Identify Structure Toxicity Relationships

pioglitazone

rosiglitazone

<u>c</u>iglitazone

C	e <mark>ll Lo</mark>	SS		chon otent	drial ial		opto	sis	Nuc	lear	Size	DN Fr	NA ag.	Di Dam		Phos lipid	*	Stea	tosis
Α	E	С	Α	E	С	Α	E	С	Α	E	C	E	С	E	С	E	С	E	C
																			H

troglitazone

Rank order risk of development by CellCiphr[™] Safety Risk

Compound	Trade Name	CellCiphr Ris		CellCiphr [®] Ranking	Commercial Status
pioglitazone	Actos®	0.414	Low	4	Occasional reversible cholestatic hepatitis
rosiglitazone	Avandia®	0.551	Moderate	3	Withdrawn Europe
ciglitazone	n/a	0.825	High	1=	Never used
troglitazone	Rezulin®	0.825	High	1=	Withdrawn

CellCiphr™ screen quantitatively relates toxic endpoints to one another

CellCiphr[™] is a comprehensive toxicity screen: a big pharma case study

- CellCiphrTM results in <u>primary rat hepatocyte</u> were compared with endpoints for three preliminary in vitro screening assays.
- Between 31% and 41% of compounds that were negative in each of the preliminary screens showed a response in at least one CellCiphr™ endpoint.
- Less than 2% of compounds that were negative in the preliminary screens were also negative in all CellCiphrTM endpoints.
- The positive CellCiphrTM results were recorded as warnings that would require further investigation for any affected compound progressing down the pipeline.

Summary of CellCiphr™ HCS

- CellCiphr™ HCS generates quantitative data regarding:
 - The relationships between triggering of toxic responses in a particular cell type.
 - The time-courses of toxic response activation within a particular cell type.
 - Data on toxic responses across multiple cell types.
- The CellCiphr™ system uses its extensive database for reference compounds to rank and score test compounds, based on the HCS AC₅₀s.

In vivo toxicity is determined by xenobiotic toxicity, exposure and the modulating effects of environment

CellCiphr and exposure data are predictive of rat in vivo toxicity (big pharma case study)

- Relationships have been demonstrated between CellCiphr™ endpoints and specific *in vivo* toxicity markers in rat.
- These relationships are considerably strengthened when exposure (plasma C_{max}) is taken into account.

CellCiphr data can be used to predict in vivo human drug-Induced liver injury (DILI)

- Data from Xu *et al* (2008)*:
 - 39 compounds labelled as safe (wrt DILI).
 - 98 compounds labelled as causing DILI.
- Use CellCiphr panels 1 and 2 data.
- Single dose C_{max} from the literature, or estimated where not available.
- AC_{50} s scaled by appropriate C_{max} .
- Build binary classification model to predict safe/DILI *Toxicological sciences 105, 97–105.

Interpretation of a binary classification model

		Observed <i>in vivo</i>					
		Safe	DILI				
Predicted by model	DILI	False Positive	True Positive				
	Safe	True Negative	False Negative				

Sensitivity = fraction of toxic compounds detected = TP/(TP + FN).

Specificity = fraction of compounds predicted to be toxic that are toxic = TP/(TP + FP)

CellCiphr data can predict in vivo human DILI

	Observed in vivo						
		Safe			DILI		
Predicted by	DILI		5			49	
model*	Safe		34			49	

Sensitivity =
$$TP/(TP + FN) = 49/(49 + 49) = 50\%$$

Specificity =
$$TP/(TP + FP) = 49/(49 + 5) = 91\%$$

*10-fold cross-validation on training set

Look at the apparent false positives

- 'False positives' are called safe by Xu et al, but predicted by the model to cause DILI:
 - carbidopa labelled as 'most concern' for DILI by FDA.
 - levodopa analogue of carbidopa.
 - **orphenadrine** safety of long-term use has not been established: periodic monitoring of blood, urine and liver function values is recommended (FDA labelling).
 - idarubicin chemotherapeutic, DNA intercalator, more potent in HepG2 then rat hepatocytes, expected to be toxic.
 - pamidronate in vivo decreases in serum alkaline phosphatase; renal toxicity.

Predictive models for *in vivo* toxicity require predictive modelling of exposure

- A predictive screening approach should predict exposure (e.g. FA, C_{max} , AUC), and its link to dose, removing the need for in vivo PK data.
- Physiologically-based pharmacokinetic (PBPK) models satisfy these requirements.

PBPK models predict the fates of compounds in the body

- PBPK models are mathematical simulation models.
- They are devised to predict the fate(s) of compound(s) in the bodies of humans, and other animals.
- Their primary output is the change over time following dosing of relevant quantities. e.g. the concentration of a compound in the plasma and other tissues.
- Simple physchem and in vitro ADME data can be used as inputs.

A conceptual physiological model used to predict somatic distribution and elimination

PBPK models inputs* for screening in drug discovery

Input Property

Hepatic microsomal intrinsic clearance (species-dependent)

Fraction unbound in plasma (species-dependent)

Blood:plasma ratio (speciesdependent)

pKa(s)

logP octanol/water

Caco-2 permeability

Solubility (buffered)

Prediction of i.v. dose, p.o. dose exposure

*Cloe® PK V2.1

Prediction of Human Oral Dose Dose-Normalised C_{\max} by PBPK Model*

Prediction of Drug Distribution by PBPK Model*

Elimination phase volume of distribution

Steady state volume of distribution

*Cloe® PK V2.1.4

Summary of Exposure Prediction

 \bigcirc PBPK models can predict PK parameters, such as C_{max} , AUC, that are suitable for scaling in vitro HCS toxicity data.

- They can also provide more direct predictions of exposure relevant for hepatotoxicity prediction, e.g concentrations in the hepatic portal vein, in liver, etc.
- Distribution volume predictions provide confidence that intracellular exposure is predictable.

In vivo toxicity is determined by xenobiotic toxicity, exposure and the modulating effects of environment

Cytokine exposure alters steatosis at 48h in primary rat hepatocytes

Summary of effect of milieu

Xenobiotic effects, both in vitro and in vivo can be affected by the presence of bioactive molecules in the medium/plasma.

 This has been noticed in multiple CellCiphr™ HCS endpoints with cytokine exposure.

 The in vitro − in vivo interpretation of such data is in its. infancy.

Summary

- HCS captures multiple mechanistic parameters covering a wide spectrum of cytopathological changes.
- HCS data can be integrated, using machine-learning approaches to rank compounds on relative toxicity, compared to a reference database.
- Successful modelling of in vivo toxicity must account for exposure.
- Ongoing effort is to combine proven technologies HCS, pattern recognition and PBPK modelling to predict in vivo toxicity from in vitro data.