Next Generation of Adaptive Integrated Testing Strategies for Skin Sensitization

Joanna Jaworska, Yuri Dancik,
Petra Kern, Frank Gerberick
Procter & Gamble
and
Andreas Natsch Givaudon

Background

- Roadmap from ITS conceptual to operational framework
 - ITS drivers & expectations
 - Elements of a testing strategy
 - Challenges to accept model based decision making
 - Bayesian networks
- Skin sensitization ITS-2
 - Evolution of input tests
 - Formalization into a Bayesian Network
 - Evidence synthesis mode (qWoE)
 - Guiding testing strategy mode (VOI)
 - efficiency

Adaptive and Flexible Testing strategy

A single generic set of tests as a replacement strategy is unlikely to be most effective

- depends on the initial information
- changes based on additional information

Adaptive Headlights in BMW

Adaptive Headlights ensure that you have the best possible view of the road ahead, even at night. As you enter a curve, the headlight's beam turns to follow the direction of the road. So you always know what's ahead.

ITS is a toxicological GPS with a dynamic route optimization setting

Skin sensitization mechanism knowledge map

Induction Phase

Elicitation Phase

Erythema Edema Vesiculation

Database

- 137 chemicals with data related to
 - Bioavailability (log Kow, AUC24, Ctot, Cfree)
 - Protein reactivity
 - (DPRA (Cys, Lys); PPRA (Cys (-/+), Lys(+/-); Ksens
 - DC activation (CD86)
 - Overall skin sensitization potential Times
 Metabolites,
 - Toxtree Michael Acceptors SMARTS
 - LLNA experimental data NS 29.00% W 22.60% M
 28.20% S 20.20%
- 124 training set/13 test set

Process of BN construction

- Follow skin sensitization process
- Combination of knowledge and data
 - Constraints in the form of fixed and forbidden arcs between nodes were specified.
- Conditional dependence characterization by use of latent variables
 - Latent variables are useful way of accumulating dose response information (Ksens), multiple readouts (PPRA, DPRA), express conceptual quantities

BN ITS

47.42%

87.95%

KEC1.5

41.8%

69.25%

KEC3

0.5171 29.06% 31.59%

ROC values (%)

LLNA state	Training set	Test set
NS	95	100
W	90	95
M	82	67
S	86	81

Test set predictions

Occurrences					
(5)	2 (5)	3 (1)	4 (2)		
5	0	0	0		
0	4	0	0		
0	1	1	1		
0	0	0	1		
	(5) 5 0	(5) 2 (5) 5 0 0 4 0 1	(5) 2 (5) 3 (1) 5 0 0 0 4 0 0 1 1		

Value of Information (VOI) driven testing strategy

- "One step look ahead hypothesis"
 Amounts to computing the mutual information MI(X, Y) for all possible observations Y and choosing the one that has the highest MI with the hypothesis variable X.
- Mutual Information MI (X, Y)- "the amount of uncertainty in Y which is removed by knowing X". MI(X, Y) = H(Y)-H(Y|X).
- Relative MI ,MI(X,Y)/H(Y), yields % of entropy of the parent node Y, H(Y), reduced by knowledge of X

Mutual Information

- A. y1 shares mutual information with x such that given a y1 the values of x are now narrowed down to the five values.
- B. y2 shares mutual information with x but it shares less information than y1 and therefore is not as helpful as y1, as it does not eliminate as many potential x values.

Impact analysis on adding DC data info when R is known

High dependence between CD86 and Reactivity

Ranking of latent variables per LLNA state

•It is easier to identify NS and S, and harder W and M classes. More tests are needed for these classes to achieve similar degree of confidence as for NS and S

Reactivity tests – value of multiple views Local based MI rankings

```
    NS: Ksens (26.5%), DPRA (17.5%), PPRA (8%);
    R (36%)
```

- W: PPRA (0.7%), DPRA (0.4%); Ksens (.3)%, R (5%)
- M: Ksens (8%), DPRA (4.5%), PPRA (1%);
 R (11%)
- S: PPRA (10%), Ksens (5.5%), DPRA (5.5%); R(15.5%)

Summary

- Times (36%)> Reactivity (20%) > Dendritic cells (15%)> Bioavailability (6%)
- High dependence between CD86 and R, Times and R
- CD86 alone is the most informative individual test 15%* but a combined reactivity is better
- DPRA is slightly more informative than PPRA
 - Cys is more informative than Lys in DPRA
 - Cys+ is more informative than Lys+ in PPRA
- Bioavailability is important for weak sensitizers because reactivity tests are not informative
 - CD86 (11 %)>B(6%)>R(5%)

^{*}The MI numbers are pertinent to this particular network structure and 4-way classification!

Interactive Inference

CD86 yes R yes TIMES Example with Citral (a weak sensitizer)

Interactive Inference

CD86 yes R yes TIMES

Evidence for Citral (a weak sensitizer)

Flexible ITS – there are many ways to get to the final decision

•In silico generated hypothesis is balanced because provides information from 3 different perspectives. Important not to make prior too "heavy". We could add DEREK but it would have to be dependent to Times.

Adaptive ITS

- if in silico data are in agreement (e.g. P(LLNA=x) is >85%, use a in vitro tests for confirmation,
 - •Which in vitro test is optimal depends on the hypothesis of LLNA potency, best is to use the test with highest MI
- •If Times is not used 2 in vitro tests are needed, most "orthogonal" test are optimal and we can identify them by evaluating Mis.

Final thoughts

 While at this point we focus on scientific credibility of ITS, there are efforts needed to make this type of systematic approach more accessible, viable and practically feasible.

- We can also analyse case studies like this one and ask themselves what if we could do it in freeware?
 - BNs with a functionality of constructing latent variables to capture conditional dependence