ChEMBL Database: Open data for use in Toxicity Prediction

Anne Hersey
ChEMBL Group, EMBL-EBI

https://www.ebi.ac.uk/chembl

- Target Searching finding data on a specific protein target
- Compound Searching finding data on substructural fragments and their associated bioactivity data
- Assay and Document searching finding data on more complex assays from text searching

HANDS ON - Target Searching

- Exercise 1
 - You will get to know the ChEMBL Interface and the data returned from target searches
 - You will identify the experimental data available for compounds interacting with specific protein targets

- 1) Search for hERG using a keyword search. How many compounds are bioactivity results are available?
- 2) Look at the target report card for hERG.
- 3) Display the Ki bioactivity data
- 4) Download all the Ki data into excel. Look at data (smiles, standard_values, pCHEMBL, properties, cmpds_chemblid, parent_cmpd_chemblid)
- 5) Other ion channels are believed to be associated with Torsade-de-Pointes arrythmias such as Nav1.5 ((SCN5A, Uniprot_id: Q14524) and Cav1.2 (CACNA1C, Uniprot_ID:Q14524). (Cardiovasc. Res., (2011),91,53-61)
- 6) Search for these in different ways in ChEMBL. Name searches (different identifiers), Browse targets, Blast Search (hint: you can get the FASTA file from Uniprot http://www.uniprot.org)

HANDS ON - Compound Searching

- You will do some sub-structure searches and compare the bioactivity data for the compounds found in your searches.
- Specifically we will investigate the difference between Cytochrome P450 inhibition of imidazoles substituted and unsubstituted between the nitrogens

- Draw the unsubstituted imidazole
- Do a substructure search
- Select Plot View
- 4. Filter using property plot for compounds with MWT<500 and ALOGP<5 (Hint: remember to update plot)
- Select Table View
- Display Bioactivities
- 7. Download to excel
- Use excel filter to select targets (pref_name column) which are Cytochrome targets
- 9. Paste cytochrome set to another workbook label all rows unsubstituted
- 10. Repeat 1-9 with the substituted imidazole
- 11. Plot data to see if there are any differences in inhibition (pCHEMBL values are a quick way of looking at this)

HANDS ON – Assay/Document Searching

- You will identify potentially interesting datasets for more complex end-points by searching the assay or document descriptions
- Specifically we will search for:
- Ames test experimental data
- TG-GATES biochemistry data

Exercise 3 - Ames Search

- 1. Type Ames into search box and select assays
- 2. Look at types of data identified (you can filter out any assays that don't look relevant at this point)
- 3. Select to display bioactivity data
- 4. Use hide/unhide options to display activity_comment
- Download data into excel

Exercise 3 - Search for TG-GATES data

- Select just this data source (hint: select activity source filter)
- 2. To search for all data for this source type * into search box and select documents
- 3. Select to view the biochemistry dataset via the document report card
- 4. Display the bioactivity data
- 5. Use hide/unhide to view activity comments

Hands On - Answers

Select target to view

hERG - Target Report Card

Target Report Card Target Name and Classification CHEMBL240 Target ID SINGLE PROTEIN Target Type HERG Preferred Name ERG | ERG-1 | ERG1 | Eag homolog | Eag-related protein 1 | Ether-a-go-go-Synonyms related gene potassium channel 1 | Ether-a-go-go-related protein 1 | H-ERG | HERG | KCNH2 | Potassium voltage-gated channel subfamily H member 2 | Voltage-gated potassium channel subunit Kv11.1 | hERG-1 | hERG1 Organism Homo sapiens Species Group ion channel|vgc|vgc|volt|cationic|k|kcnh, kv10-12.x (ether-a-go-go) Protein Target Classification

Target Components

Component Description	Relationship	Accession	
Potassium voltage-gated channel subfamily H member 2	SINGLE PROTEIN	Q12809	

Target Relations

ChEMBL ID	Pref Name	Target Type		
CHEMBL2362996	Voltage-gated potassium channel	PROTEIN FAMILY		

Approved Drugs

ChEMBL ID	Name	Mechanism of Action	References
CHEMBL1083993	AMIODARONE HYDROCHLORIDE	HERG blocker	<u>DailyMed</u>
CHEMBL473	DOFETILIDE	HERG blocker	<u>DailyMed</u>
CHEMBL1201729	DRONEDARONE HYDROCHLORIDE	HERG blocker	Expert FDA
CHEMBL1200564	IBUTILIDE FUMARATE	HERG blocker	DailyMed PubMed
CHEMBL1700	SOTALOL HYDROCHLORIDE	HERG blocker	<u>DailyMed</u>

Exercise 1- bioactivity data

Download file contains:

Parent smiles, parent and salt identifiers

Physchem descriptors

Ki values

pCHEMBL values - -log10(molar IC50, XC50, EC50, AC50, Ki, Kd or Potency)

Exercise 1 – searching for other ion channels

Name search for target name, CHEMBL_ID or Uniprot_ID

Exercise 1 – BLAST search

Find target in Uniprot

http://www.uniprot.org

Exercise 2 – Substructure search

Exercise 2 – Filter on compound properties

Use sliders to filter on MWT and LogP

Exercise 2 – Filtered dataset

Displaying only compounds with MWT<500 and LogP<5

Exercise 2 – Table View of Filtered Compound Set

Exercise 2 – Bioactivity data on filtered compounds

Exercise 2 – Select just Cytochrome P450 data in excel

After filtering in excel 548 values

Exercise 2 - Results from substituted imidazole search

- 1297 compounds
- 1035 compounds after ALOGP <5 and MWT <500 filter
- 8028 bioactivity values
- Filter only on Cytochromes 132 bioactivity values

File: imidazole_example_final.xlsx

Exercise 2 – View of Cytochrome P450 data on substituted and unsubstituted Imidazoles

Note also includes assignment of inactive (pCHEMBL=5) for appropriate compounds

Exercise 3 – Assay search for Ames

Deselect any data that looks irrelevant

Exercise 3 – bioactivity results

Select fields to view

Exercise 3 – Bioactivity Results

r														
Ingredient	Molweight	Standard Type	Relation	Standard Value	Standard Units	Activity Comment [▼]	Assay Type	Description	Assay Src Description	Assay Organism	Target Type	Target Name	Target Organism	Reference
CHEMBL1275764								metabolic activation system						
CHEMBL1275764	574.67	Activity				Toxic	А	Induction of mutagenicity in Salmonella serovar Typhimurium TA 100 assessed as number of revertant colonies at 100 ug by Ames assay	Scientific Literature	Salmonella enterica subsp. enterica serovar Typhimurium	ADMET	ADMET		Antimicrob. Agents Chemother., (2010) 54:6:2507
CHEMBL1275764	574.67	Activity				Toxic	А	Induction of mutagenicity in Salmonella serovar Typhimurium TA 100 assessed as number of revertant colonies at 500 ug by Ames assay	Scientific Literature	Salmonella enterica subsp. enterica serovar Typhimurium	ADMET	ADMET		Antimicrob. Agents Chemother., (2010) 54:6:2507
CHEMBL1276609	366.28	Activity				Toxic	А	Genotoxicity in Salmonella Typhimurium by Ames test	Scientific Literature	Salmonella enterica subsp. enterica serovar Typhimurium	ADMET	ADMET		Eur. J. Med. Chem., (2010) 45:11:4879
CHEMBL458102	413.16	Activity			A	Toxic	А	Genotoxicity in Salmonella Typhimurium by Ames test	Scientific Literature	Salmonella enterica subsp. enterica serovar Typhimurium	ADMET	ADMET		Eur. J. Med. Chem., (2010) 45:11:4879

Results in activity comment field

Exercise 3 – Activity Source Filter

Exercise 3 –TG-GATES Datasets

Select to view biochemistry data

Exercise 3 – TG-GATES Biochemistry Data

Select to view biochemistry bioactivity data from TG-GATES

Exercise 3 – Bioactivity Results

ChEMBL Bioactivity Search Results 83500 Please select.... records per page Show / hide columns **pChEMBL** Standard Standard Standard Activity **Assay Src** Assay Assay Target Target Target Value Units Ingredient Molweight Type Relation Comment Type Description Description Organism Type Name Organism Reference 282.29 6419.2 IU/L N = 5; SD **ORGANISM** CHEMBL2095944 concentration TG_GATES: regimen: Open TG-Rattus Rattus Rattus = 4954.63: single; time: 24 hours; **GATEs** norvegicus norvegicus norvegicus p-value = dose: high | dataset: 0.07 biochemistry; assay: ALP (alkaline phosphatase) 282.29 concentration = 5387.2 IU/L N = 5; SDTG_GATES: regimen: Open TG-ORGANISM CHEMBL2095944 Rattus Rattus Rattus = 4041.51: single; time: 9 hours; GATEs norvegicus norvegicus norvegicus p-value = dose: high | dataset: 0.06 biochemistry; assay: ALP (alkaline phosphatase) 3422.2 IU/L N = 5; SD 282.29 concentration TG GATES: regimen: Open TG-Rattus ORGANISM Rattus Rattus CHEMBL2095944 = 2691.45: **GATEs** single; time: 6 hours; norvegicus norvegicus norvegicus p-value = dose: middle | dataset: 0.09 biochemistry; assay: ALP (alkaline phosphatase)

Note size of data set: 83500 rows as multiple dose, time points, end points