

Emilio Benfenati

Professor

A E \$ 4 R Project Coordinator

Mario Negri Institute

Integrating Infrastructure Requirements for Chemistry Research in Predictive Toxicology

Pre-conference OpenTox workshop of the AXLR8 2010 meeting May 30th, 2010 : Potsdam, Germany

(Q)SAR

(quantitative) structure-activity relationship

IN SILICO

Partial view in QSAR

- Errors poor statistical meaning; wrong chemical info; wrong tox basis
- False belief skepticism / affected by personal background
- Opportunities missed

Explicit and implicit knowledge

Probabilistic and deterministic approach

THE CAESAR ENDPOINTS

BIOCONCENTRATION FACTOR

SKIN SENSITIZATION

MUTAGENICITY

CARCINOGENICITY

DEVELOPMENTAL TOXICITY

Mutagenicity

Classification Models

QSAR models of noncongeneric compounds to predict mutagenicity can use TWO APPROACHES:

1: STRUCTURAL ALERTS

2: STATISTICS

CAESAR MXDELLING FOR MUTAGENICITY

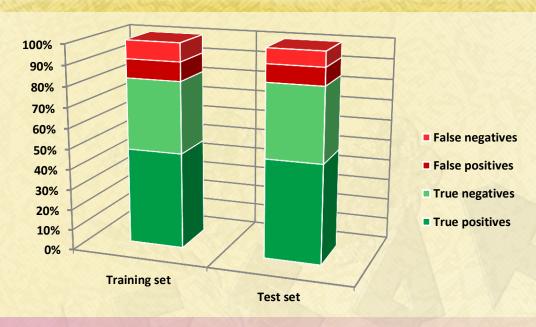
Dataset

- Kazius-Bursi Mutagenicity Dataset (Kazius et al. J Med Chem, 2005), originally containing 4337 chemical compounds, supplied by R. Bursi
- Data are categorical
- Following quality checks the database has been pruned and modified to 4225 compounds: 2358 classified as mutagens and 1867 classified as non-mutagens by Ames test
- For validation, the dataset has been divided into training (80%) and test (20%) sets

CAESAR MXDELLING FOR MUTAGENICITY

Descriptors

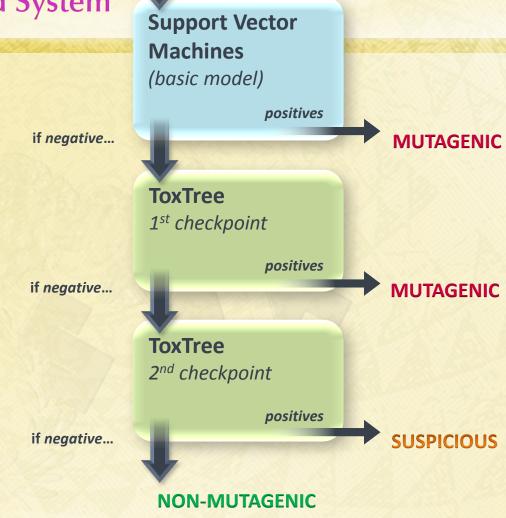
2D descriptors: MDL software


Models

- Classification: SVM (Support Vector Machines)
- 10 fold cross-validation

Results of <4 E \$4 R M & delling

- Good accuracy (considering reproducibility of the experimental data about 85%)
- A cost-sensitive model was also evaluated to reduce FN



MUTAGENICITY

Architecture of the Integrated System

3 STEPS IN CASCADE:

- statistical model (based on chemical descriptors)
- knowledge-based filter (based on structural alerts)

ToxTree vs SVM

COMPARISON OF PERFORMANCE (on the same data):

CAESAR Test Set	Toxtree	SVM model
accuracy:	78%	√ 83%
sensitivity:	86%	√ 87%
specificity:	69%	√ 79%

Integrated Mxdel Statistics

CAESAR Test Set	SUSPICIOUS taken as NON-MUTAGENIC	suspicious taken as MUTAGENIC
accuracy:	83.3%	82.1%
sensitivity:	88.3%	90.9%
specificity:	77.1%	71.2%

CONFIDENT CHOICE

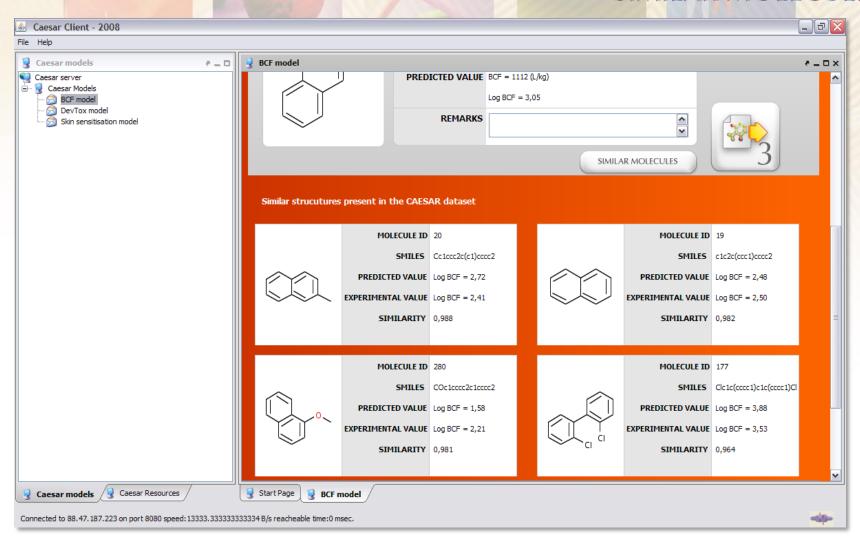
Accuracy close to the reliability of the experimental test (85%)

PRUDENT CHOICE

Sensitivity boosted over 90%

Mutagenicity: Conclusions

- The cascade model has achieved a classification accuracy close to the reliability of the *Ames test* data (average interlaboratory reproducibility error of 15%) used to train and validate the model;
- The experimental error is a major bottleneck;
- This gives evidence that very good performance is possible with machine learning software from public domain;
- Selected structural alerts can discover FN (but can moderately increase FP as well);
- The CAESAR model has been checked against commercial systems (Multicase, Derek); it gave always not worse results.



Viewing the Results

SIMILAR MOLECULES

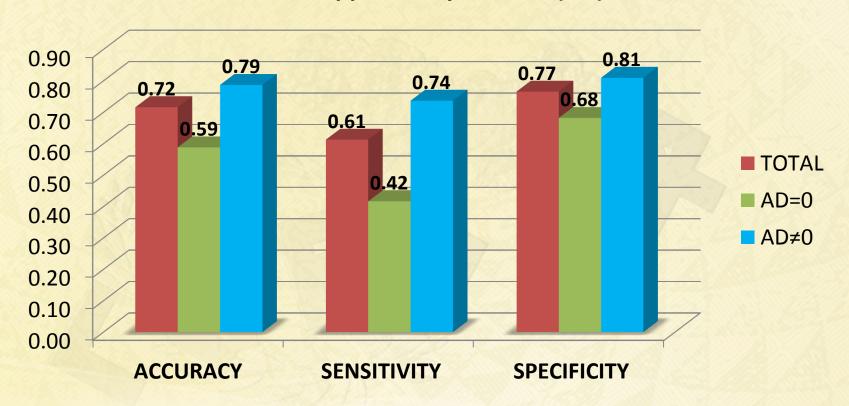
APPLICABILITY DOMAIN: CHEM, TOX, MATH

Current methods:

on chemical info / a priori

CAESAR approach:

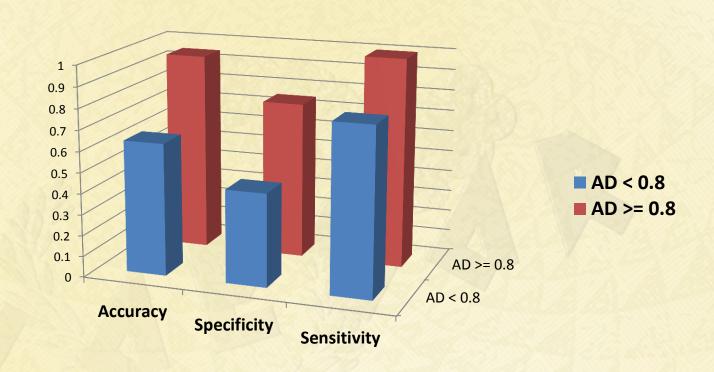
on chem; tox; math
a priori and a posteriori
based on input and output space



CARCINOGENICITY

THE CAESAR APPLICABILITY DOMAIN

Caesar-Applicability Domain (AD)



DEVELOPMENTAL TOXICITY

THE CAESAR APPLICABILITY DOMAIN

