
Final Validation Routines

 1

Deliverable D5.4

Final validation routines

with facilities to validate

against confidential data

Grant Agreement Health-F5-2008-200787

Acronym OpenTox

Name An Open Source Predictive Toxicology Framework

Coordinator Douglas Connect

Final Validation Routines

 2

Contract No. Health-F5-2008-200787

Document Type: Deliverable Report D5.4

WP/Task: WP5

Name Final validation routines with facilities to validate against confidential data

Document ID: OpenTox Deliverable Report WP5 D5.4

Date: 31 August 2011

Status: Final Version

Organisation:

Contributors Andreas Karwath (AK)

Martin Gütlein (MG)

Barry Hardy

Roman Affentranger

ALU-FR

ALU-FR

DC

DC

Distribution: Public

Purpose of Document: To disseminate the final results on procedures for the validation of

toxicity data within the OpenTox Framework including the ability to

validate confidential data

Document History: 1 – Initial draft prepared on May 12, 2011 AK

2 – Update of initial draft on May 30, 2011 MG

3 – Added examples and HTML forms Jul 21, 2011 MG

4 – Updated draft, Aug 18, 2011 BH

5 – Updated and Edited draft, Oct 27, 2011, RA

6- Updated draft, Oct 29, 2011, BH

Final Validation Routines

 3

Table of contents

Table of contents .. 3

Summary .. 5

1 Introduction ... 7

2 Validation and Reporting Framework ... 7

2.1 Open Source programming tools ... 7

2.2 RESTful Web Service Architecture ... 7

2.3 OpenTox Validation and Reporting Application Programming Interfaces (APIs) 8

3 Validation and reporting routines ... 13

3.1 Single validation routines... 13

3.1.1 Running a single validation example using HTML forms .. 14

3.2 Cross-validation .. 15

3.3 Comparing validation results ... 15

4 (Q)SAR reporting for REACH ... 15

4.1 (Q)SAR reporting web service for REACH .. 16

4.2 (Q)SAR reporting editors for REACH ... 17

4.2.1 QMRF Editor ... 18

4.2.2 QPRF Editor (Q-edit) .. 19

5 Validation Routines for Confidential Data ... 25

5.1 REACH legislation and confidential data .. 25

5.2 Authentication and authorization in OpenTox ... 26

5.2.1 Topological description of access control .. 26

5.2.2 Managing access.. 27

5.2.3 Policy Creation and management ... 29

5.2.4 Evaluation of the current access control system .. 30

5.2.5 OECD Principles ... 31

5.3 Use Case description ... 31

5.3.1 Use Case implementation .. 31

6 Validation examples using confidential data ... 32

6.1 Validation against confidential data with ToxCreate .. 33

6.2 Validation against validation data using distributed web services .. 35

6.2.1 Login: .. 36

6.2.2 Start validation:.. 36

7 Validation against confidential data using standalone version 41

Final Validation Routines

 4

7.1 Standalone Installation of OpenTox Web Services .. 41

7.2 Standalone Installation of particular services ... 42

7.2.1 AMBIT .. 42

7.2.2 Jaqpot .. 43

7.2.3 ToxCreate .. 44

8 Conclusions .. 44

9 Appendix .. 45

9.1 Training test split report .. 45

9.2 Cross-validation report ... 49

9.3 Algorithm comparison report .. 55

Final Validation Routines

 5

Summary

OpenTox is supporting the deployment of validation routines for algorithms and models, as well as reporting

capabilities for the generation and presentation of results of alternative testing methods including results of

relevance to REACH1. To prevent sensitive information from being accessed or copied by unauthorized users,

the OpenTox validation routines allow the validation against confidential data based on a rigorous

authentication and authorization strategy. The report-generating component generates reports to present the

results of predictions and (Quantitative) Structure Activity Relationship ((Q)SAR) model validations to the user in

a structured reporting format. OpenTox reporting formats are guided by standards and templates such as the

(Q)SAR Model Reporting Format (QMRF) and the (Q)SAR Prediction Reporting Format (QPRF)2, and by OECD

validation principles, which specify that to facilitate the consideration of acceptance of a (Q)SAR model for

regulatory purposes, it needs to be associated with the OECD Guidelines for (Q)SAR Validation3.

This report describes and documents the final achievements within the OpenTox project with respect to

routines for validation and reporting. We provide an overview of the final framework for validation and

reporting routines and illustrate the rationale behind their implementation. The validation and reporting

framework follows the open source philosophy generally adopted in OpenTox, and has been realized as

standardized web services adhering to the OpenTox Application Programming Interfaces (APIs).4 Both the

validation and the reporting web service APIs are described in detail in this report. We introduce the validation

and reporting solutions made available as OpenTox web services and provide examples of their use. The

currently available, state-of-the-art validation and reporting services encompass single validation routines

such as Training-Test Set validation, Training-Test Split validation, Bootstrapping, Test Set validation, and also

cross-validation routines. An additional reporting functionality is offered to compare validation results of

different prediction algorithms that have been applied to the same dataset(s). Such a report may help

determining whether one of a few of the algorithms perform significantly better than the rest.

We describe the specific perspective of (Q)SAR reporting for REACH, beginning with a sketch of a user workflow

resulting in QMRF and QPRF reports for a (Q)SAR model and a prediction. We introduce an initial

implementation of a specialized (Q)SAR reporting service for REACH that manages the creation of both QMRF

and QPRF reports, collecting information from several OpenTox web services to automatically fill in report

content. Since the complete reports cannot be generated automatically, we incorporated specific editors for

QMRF and QPRF reports, which we describe in Section 4.2.

The validation and reporting services are embedded within the OpenTox Authorization and Authentication

(A&A) strategy. Thus, they can be applied for handling confidential data, and are an important prerequisite for

acceptance of the service. We introduce the concept of A&A and describe why handling confidential data is

important also in the context of REACH. The implementation of A&A in OpenTox is described in detail and is

put in relation to the OECD Principles for (Q)SAR validation. We describe the use case of validating confidential

data.

We also provide examples for validating confidential data either within online services or through a local,

stand-alone installation of OpenTox services. The validation web service is seamlessly integrated in the web

1 http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08

_08

2 http://tcsweb3.jrc.it

3 http://www.oecd.org/home/0,2987,en_2649_201185_1_1_1_1_1,00.html

4 www.opentox.org/dev/apis/api-1.2

http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08
http://tcsweb3.jrc.it/
http://www.oecd.org/home/0,2987,en_2649_201185_1_1_1_1_1,00.html
http://www.opentox.org/dev/apis/api-1.2

Final Validation Routines

 6

application ToxCreate, which offers a user-friendly graphical user interface (GUI) while providing confidentiality

regarding submitted data. A second example is provided describing how to make use of the validation service

while ensuring confidentiality using command-line tools. For some users, even these measures might not offer

tight enough security. For such cases, we describe how stand-alone versions of OpenTox or individual services

can be used to perform the tasks that are routinely done over the Internet in OpenTox.

After drawing conclusions on our implementation of the reporting and validation services especially in the

context of REACH, we provide specific example validation reports on a Training-Test Split Validation, on a

Cross-Validation, and on an algorithm comparison.

Final Validation Routines

 7

1 Introduction

To facilitate the consideration of acceptance of a (Quantitative) Structure Activity Relationship i.e. (Q)SAR model

for regulatory purposes the OECD published guidelines for the validation of (Q)SAR models5. The guidelines

state that a model should be associated with a defined endpoint, an unambiguous algorithm, a defined domain

of applicability, appropriate measures of goodness-of-fit, robustness and predictivity, and a mechanistic

interpretation, if possible. Following these principles, OpenTox offers reporting capabilities for the generation

and presentation of results of alternative testing methods including validation and reporting results of

relevance to REACH6. OpenTox reporting formats are guided by standards and templates such as (Q)SAR Model

Reporting Format (QMRF) and the (Q)SAR Prediction Reporting Format (QPRF)7, resulting in the generation of

reports presenting the results of predictions and (Q)SAR model validations to the user in a structured reporting

format.

This report describes and documents the final progress which has been achieved within the OpenTox project

with respect to the validation and the automatic creation of reporting facilities for the validation of (Q)SAR

models and algorithms using toxicology data.

2 Validation and Reporting Framework

The validation and reporting framework was implemented according to the following principles:

2.1 Open Source programming tools

As the open source philosophy is inherently important for this project, all tools developed are openly available

via public repositories. The main language used in the development of the validation prototype is ruby8. Other

applications used are also open source, and include e.g. Apache9.

2.2 RESTful Web Service Architecture

All current OpenTox web services adhere to the Representational State Transfer (REST) Web service architecture

for sharing data and functionality among loosely-coupled, heterogeneous systems. The REST web service

architecture has a number of desired advantages when compared to other architectures:

1. It is lightweight, as only some additional xml mark-up is required;

2. The produced results are human-readable, i.e. the resources are uniquely identified by URIs and

described by representations;

3. RESTful web services are typically stateless10;

4. The produced web services have a uniform interface (the only allowed operations are the HTTP

operations);

5. Components manipulate resources by exchanging representations of the resources.

5 http://www.oecd.org/dataoecd/33/37/37849783.pdf and

http://www.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono%282007%292&doclanguage=en

6 http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08

7 http://tcsweb3.jrc.it

8 http://www.ruby-lang.org

9 http://httpd.apache.org/

10 http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08
http://tcsweb3.jrc.it/
http://www.ruby-lang.org/
http://httpd.apache.org/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Final Validation Routines

 8

All validation and reporting resources have representations providing information about the type of validation

performed, the original data set used, the random seed used for splitting (in the case of a k-fold-cross

validation), or which algorithm was used for the validation. As the exchange format, the

Resource Description Framework (RDF) representation11, in particular the XMLformated version, was chosen.

1. RDF is a W3C recommendation: RDF-related representations such as rdf/xml and rdf/turtle are w3c

recommendations so they constitute a standard model for data exchange;

2. RDF is part of Semantic Web Policy: RDF as a representation for a self-contained description of web

resources contributes to the evolution of the Semantic Web; a web where all machines can

“understand” each other;

3. RDF is designed to be machine-readable: While a human user can read an RDF document, it is unlikely

they will to be able to understand it (at least not easily). RDF is intended to be understood by

computers, not people.

Some services support additional representations like YAML12 (YAML Ain't Markup Language).

2.3 OpenTox Validation and Reporting Application Programming Interfaces (APIs)

Validation and Reporting APIs are included in the OpenTox API ensuring the seamless interaction between all

OpenTox components with regards to validation and reporting needs. The current OpenTox API version is API

1.2 (www.opentox.org/dev/apis/api-1.2). Each validation and reporting component is, according to the design

specifications above, a resource. Each validation resource for example, contains information about the dataset

and the model, so the underlying procedures can be invoked.

We use the notation ‘/resource’ to denote the class of URIs someDomain.com/resource, where

someDomain.com can be the domain name of any OpenTox server (such as opentox.informatik.uni-

freiburg.de). We use sub-URIs to distinguish different web services: e.g. opentox.informatik.uni-

freiburg.de/validation for the validation web service. All validation resources share this prefix. For example

opentox.informatik.uni-freiburg.de/validation/1 is the result of a plain test-set validation with ID 1,

opentox.informatik.uni-freiburg.de/validation/crossvalidation/2 is the resource of a cross-validation with ID 2.

The validation API consists of a number of operations that are described in the following section. Each

operation uses one of the following HTTP methods: GET, PUT, POST, or DELETE13:

Description Meth

od

URI Parameters Result Status codes

Get all

validations

GET / [subjectid] List of

validation URIs

200,404

Retrieves a

validation

representatio

n

GET /{id} [subjectid] Validation

representation

in one of the

supported

MIME types

200,404

11 www.w3.org/RDF

12 www.yaml.org

13 www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

http://www.w3.org/RDF/
http://www.yaml.org/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Final Validation Routines

 9

Validates a

model on a

test dataset

POST /test_set_validation [subjectid]

model_uri

test_dataset_uri

test_target_dataset_uri

(default = test_dataset_uri)

prediction_feature (default =

dependent variable of

model)

Validation URI

or Task URI

200,400,404,

500

Builds a

model on a

training

dataset and

validates it

on a test

dataset

POST /training_test_valdia

tion

algorithm_uri

prediction_feature

algorithm_params (string,

default="")

training_dataset_uri

test_dataset_uri

test_target_dataset_uri

(default = test_dataset_uri)

y_scramble (boolean,

default=false)

y_scramble_seed (integer,

default=1)

[subjectid]

Validation URI

or Task URI

200,400,404,

500

Splits a

dataset into

training and

test dataset

according to

a certain

ratio, and

performs a

validation

POST /training_test_split algorithm_uri

prediction_feature

algorithm_params

(string,default="")

dataset_uri

split_ratio (float,

default=0.66)

random_seed (integer,

default=1)

y_scramble (boolean,

default=false)

y_scramble_seed (integer,

default=1)

[subjectid]

Validation URI

or Task URI

200,400,404,

500

Performs a

bootstrap

validation

POST /bootstrapping algorithm_uri

prediction_feature

dataset_params (string,

default="")

dataset_uri

bootstrap_percentage (float,

default=0.66)

random_seed (integer,

default=1)

y_scramble (boolean,

default=false)

Validation URI

or Task URI

200,400,404,

500

Final Validation Routines

 10

y_scramble_seed (integer,

default=1)

[subjectid]

Directly

perform a

validation by

specifying

test- and

prediction

dataset

POST /validate_datasets prediction_feature

test_dataset_uri

test_target_dataset_uri

(default = test_dataset_uri)

prediction_dataset_uri

predicted_feature (.i.e

feature in prediction

dataset)

[subjectid]

Validation URI

or Task URI

200,400,404,

500

Deletes a

validation.

DELE

TE

/{id} [subjectid] - 200,404

The same design concepts were used in the construction of the Cross-Validation API. A cross-validation

component performs k single validations using a standard k-fold cross-validation.

Description Meth

od

URI Parameters Result Status codes

Get all cross-

validations

GET /crossvalidation [subjectid] List of

crossvalidation

URIs

200,404

Retrieves a

cross-

validation

representatio

n

GET /crossvalidation/{id

}

[subjectid] Cross-

Validation in

one of the

supported

MIME types

200,404

Returns all (k)

validations

that belong

to a

crossvalidatio

n

GET /crossvalidation/{id

}/validations

[subjectid] List of

validation URIs

200,404

Performs a k-

fold cross-

validation.

POST /crossvalidation algorithm_uri

prediction_feature

algorithm_params (string,

default="")

num_folds (integer,

default=10)

random_seed (integer,

default=1)

stratified (boolean,

default=true)

y_scramble (boolean,

Cross-

Validation URI

or Task URI

200,400,404,

500

Final Validation Routines

 11

default=false)

y_scramble_seed (integer,

default=1)

[subjectid]

Performs a

leave-one-

out cross-

validation.

POST /crossvalidation/lo

o

algorithm_uri

prediction_feature

algorithm_params (string,

default="")

y_scramble (boolean,

default=false)

y_scramble_seed (integer,

default=1)

[subjectid]

Cross-

Validation URI

or Task URI

200,400,404,

500

Deletes a

cross-

validation.

DELE

TE

/crossvalidation/{id

}

[subjectid] - 200,404

A similar architectural concept was applied to the construction of the API for the (Q)SAR REACH reporting web

service API, which provides reporting capabilities for all validation objects.

Description Meth

od

URI Parameters Result Status codes

Create QMRF

report

POST /reach_report/qmrf application/x-form-www-

urlencoded

model_uri=Model URI

or application/qmrf-xml

for creating a report with

predefined QMRF XML

content

Report URI or

Task URI

200,400,404,

500

Replaces

QMRF report

POST /reach_report/qmrf

/{reportid}

application/qmrf-xml

for creating a report with

predefined QMRF XML

content

Report URI 200,400,404,

500

Update

partially

QMRF report

PUT /reach_report/qmrf

/{reportid}

validation_uri = a List of

crossvalidation URIs

and/or validation URIs of

the same model

<report_section (as defined

in qmrf.dtd)> = content as

string

Report URI or

Task URI

200,400,404,

500

Delete QMRF

report

DELE

TE

/reach_report/qmrf

/{reportid}

deletes the report

Final Validation Routines

 12

Retrieves the

report

GET /reach_report/qmrf

/{reportid}

retrieves the report representation,

, format

specified by

MIME type

(XML, RDF,

HTML, PDF,

XLS, where

applicable)

Start qmrf

editor with

report

GET /reach_report/qmrf

/{reportid}/editor

- return jnlp,

starts QMRF

editor as Java

webstart

application

200,404

Create QPRF

report

POST /reach_report/qprf application/x-form-www-

urlencoded

model_uri = Model URI

One of {

dataset_uri = Dataset URI

compound_uri = compound

uri

}, specifying the compounds

or application/qprf-format-

to-be-defined

for creating a report with

predefined QPRF content

Report URI or

Task URI

200,400,404,

500

Replaces

QPRF report

POST /reach_report/qprf/

{reportid}

same as above, replaces the

content

Report URI

Updates QPRF

report

PUT /reach_report/qprf/

{reportid}

same as above, but adds

new content to the report

Report URI

Deletes QPRF

report

DELE

TE

/reach_report/qprf/

{reportid}

deletes the report

Retrieves the

report

content

GET /reach_report/qprf/

{reportid}

retrieves the report representation,

, format

specified by

MIME type

(XML, RDF,

HTML, PDF,

XLS, where

applicable)

Report

searching

facilities

GET /reach_report/{type

}

application/x-form-www-

urlencoded

any or subset of

Retrieves list of

reports, related

to the model,

Final Validation Routines

 13

model_uri = Model URI

dataset_uri = Dataset URI

compound_uri = Compound

URI

algorithm_uri = Algorithm

URI

endpoint_uri= endpoint

URI, as defined by the

ontology

search=any free text, etc.

specified by

any of the

parameter URI

More information about the validation and reporting API is available at the address

http://opentox.org/dev/apis/api-1.2/Validation.

3 Validation and reporting routines

The validation service evaluates the performance of prediction algorithms. This is done by building models

with training datasets, and applying those prediction models to test datasets. The predicted values are

compared to the actual known outcome. As described in the following sections, several state-of-the art

validation and reporting routines are available for both regression and classification models.14

3.1 Single validation routines

Single validation routines judge the predictive performance achieved on a single test dataset. Several

techniques are supported:

 Training test set validation15

The user has to specify training and test dataset. A predictive model is build based on the training

dataset, and applied to the test dataset. This is a common use case, as publicly available datasets are

often already separated into training and test datasets.

 Training test split validation16

The user has to specify a dataset. This dataset is split automatically into training and test dataset (The

split is performed randomly; however, the random seed can be set by the user to repeat the exact

same split.) A training test set validation is then performed with the two datasets.

 Bootstrapping17

This is a state-of-the art mechanism that splits a single dataset into training and test dataset via

sampling18. Again a training test set validation is performed with the created datasets.

 Test set validation19

A test set validation is started with an already existing prediction model, applied to a test dataset.

14 This section provides an overview of existing validation methods. More details are provided in the API section as well as in

previous Deliverable documents 5.1, 5.2 and 5.3.

15 http://opentox.informatik.uni-freiburg.de/validation/training_test_validation

16 http://opentox.informatik.uni-freiburg.de/validation/training_test_split

17 http://opentox.informatik.uni-freiburg.de/validation/bootstrapping

18 http://en.wikipedia.org/wiki/Bootstrapping_%28machine_learning%29

19 http://opentox.informatik.uni-freiburg.de/validation/test_set_validation

http://opentox.informatik.uni-freiburg.de/validation/training_test_validation
http://opentox.informatik.uni-freiburg.de/validation/training_test_split
http://opentox.informatik.uni-freiburg.de/validation/bootstrapping
http://en.wikipedia.org/wiki/Bootstrapping_%28machine_learning%29
http://opentox.informatik.uni-freiburg.de/validation/test_set_validation

Final Validation Routines

 14

3.1.1 Running a single validation example using HTML forms

All validation routines can be started by sending a REST POST call to the particular service. To make this

process easier for users, HTML forms are provided for all validation methods. We exemplify this by performing

a training test split validation20. Figure 1 shows the HTML form provided for a training test split validation. The

forms are not aimed for a novice user, as the user still has to fill in the URIs pointing to algorithms and

datasets. An easier way to use the validation services is shown in Section 6.1. The settings in this example will

use Lazar to build a model on 66% of the referenced Salmonella Mutagenicity dataset, and use this model to

predict the remaining 34% percent of compounds.

Figure 1: Use HTML form to invoke a training test split validation

As soon as the task is finished, a validation URI21 will be returned to the user. When visiting the validation URI

with a browser, the user can follow a second link in order to ‘Search for [a] corresponding report’22. This page

provides an already created report for this validation, as well as another HTML form (Figure 2) to build the

validation report.

Figure 2: Use HTML form to build a report for the validation

By pressing ‘Create validation report’ the link to report is returned. A copy of this report can be found in the

appendix (section 9.1).

20 Visit http://opentox.informatik.uni-freiburg.de/validation/training_test_split with a browser.

21 http://opentox.informatik.uni-freiburg.de/validation/451

22 http://opentox.informatik.uni-freiburg.de/validation/report/validation?validation=http://opentox.informatik.uni-

freiburg.de/validation/451

http://opentox.informatik.uni-freiburg.de/validation/training_test_split
http://opentox.informatik.uni-freiburg.de/validation/451
http://opentox.informatik.uni-freiburg.de/validation/report/validation?validation=http://opentox.informatik.uni-freiburg.de/validation/451
http://opentox.informatik.uni-freiburg.de/validation/report/validation?validation=http://opentox.informatik.uni-freiburg.de/validation/451

Final Validation Routines

 15

3.2 Cross-validation

A k-fold cross-validation evaluates a prediction algorithm by splitting a dataset into k folds. The following

procedure is then repeated k-times: one fold of the data is used as test-dataset while the remainder is used as

training dataset. This method has the advantage of employing the whole dataset as test dataset, and therefore

gives a more reliable estimate then a single validation. The validation service provides a k-fold cross-validation

routine23 as well as leave-one-out cross-validation24. The latter is a special case of cross-validation where k is

set to the number of compounds in the datasets. It is especially suited for very small datasets.

Similar to the example that was described in the section above (3.1.1), HTML forms can be used to run a cross-

validation. Hence, we used Lazar to perform a cross-validation on the Fish toxicity regression dataset25. The

corresponding report is attached to the appendix (9.2).

3.3 Comparing validation results

One additional report is provided to compare the validation results of various prediction algorithms that have

been applied to the same dataset (or a range of datasets). This report compares important validation statistics

of interest, and automatically performs statistical tests to determine if some algorithms are significantly better

than others.

We provide an example that compares two state-of-the-art machine learning algorithms: a decision tree

algorithm versus a support vector machine. Both prediction algorithms have been evaluated via 5-fold cross-

validation on a Blood-Brain-Barrier dataset. The resulting report can be found in the appendix (see 9.3).

4 (Q)SAR reporting for REACH

Figure 3: User perspective on (Q)SAR reports for REACH

Figure 3 shows the user perspective on working with QMRF and QPRF reports within the OpenTox framework.

The workflow for reports allows OpenTox applications such as ToxCreate26 and ToxPredict27 to easily create

23 http://opentox.informatik.uni-freiburg.de/validation/crossvalidation

24 http://opentox.informatik.uni-freiburg.de/validation/crossvalidation/loo

25 Uploaded to our services with dataset-URI: http://opentox.informatik.uni-freiburg.de/dataset/556

26 www.toxcreate.net

27 www.toxpredict.net

http://opentox.informatik.uni-freiburg.de/validation/crossvalidation
http://opentox.informatik.uni-freiburg.de/validation/crossvalidation/loo
http://opentox.informatik.uni-freiburg.de/dataset/556
http://www.toxcreate.net/
http://www.toxpredict.net/

Final Validation Routines

 16

and access reports. The reports can be created directly from the respective resources the user is working with

within the applications: QMRF reports are created from models, QPRF reports are created from predictions, i.e.

from a combination of models and compounds. For example, in ToxCreate a QMRF report is created

automatically after a new model is built and validated. The user can edit, save, and export this report with the

QMRF editor. Similarly, a QPRF editor is available for QPRF reports28. Both editors are implemented as

standalone applications that can be started with a web browser. The actual creation of the report is done with a

separate OpenTox web service running in the background.

4.1 (Q)SAR reporting web service for REACH

An OpenTox (Q)SAR reporting web service was designed to manage QMRF and QPRF reports for REACH

submission purposes. The initial implementation of the service is available at opentox.informatik.uni-

freiburg.de/validation/reach_report.

Figure 4 shows how the creation of a report works. A QMRF report is created from an existing (Q)SAR model

that is provided to the web service as a URI parameter. The web service internally collects information from a

range of other web services to automatically fill in the report content. For example, it queries the validation

web service to add all cross validations that have been performed for the algorithm and training dataset (that

have been used for building the model). The created QMRF report is stored at the report service. When creating

a QPRF report, the compounds which are predicted by the model are required as additional input parameters29.

Like all OpenTox resources, each report is identified and can be accessed via its URI. The report is made

available in the official xml format30, as well as in RDF xml (which is the common data exchange format within

the OpenTox framework).

The web service furthermore allows the user to update and delete existing reports. The following sections

describe the web service functionality in more details: the Application Programming Interface (API) definition

for the service is presented in section 3.3.

28 Under the name of Q-edit.

29 The QPRF service implementation is an ongoing development

30 The Document Type Definition (DTD) for the QMRF xml can be found at ambit.sourceforge.net/qmrf/qmrf.dtd; an official

xml format for QPRF has yet to be defined.

http://ambit.sourceforge.net/qmrf/qmrf.dtd

Final Validation Routines

 17

Figure 4: A web service for creating reports

4.2 (Q)SAR reporting editors for REACH

The complete content of QMRF and QPRF reports cannot be generated fully automatically. There are some

fields that require user input, e.g., the mechanistic interpretation of the model (if possible) in the QMRF report

as required by the fifth OECD Validation Principle. To this end, OpenTox is providing two editors to work with

the reports. Figure 5 visualizes that both, the QMRF editor and the QPRF editor, can be used in a flexible way.

They can load, edit and store reports to/from the REACH reporting web service (introduced in section 3), as

well as to the local file system of the user. Furthermore, it is possible to export reports in PDF format. The

following sub-sections here introduce both reporting editors in more detail.

Figure 5: QMRF and QPRF Editors can be used to edit/store/export reports.

4.2.1 QMRF Editor

The original QMRF editor was developed by the OpenTox partner IDEA31. It is an open source Java application,

and can be started as a Web Start application32. The original functionality allows creating a new report from

31 See ambit.acad.bg

32 http://ambit.sourceforge.net/qmrf/jws/qmrfeditor.jnlp

http://ambit.acad.bg/
http://ambit.sourceforge.net/qmrf/jws/qmrfeditor.jnlp

Final Validation Routines

 18

scratch. It is further possible to load existing reports that are stored in the predefined QMRF-xml format. Each

section of the report can be edited via text fields or forms that provide more guidance (i.e. for QMRF authors).

Help dialogs are available for every section. QMRF reports can be stored locally in QMRF-xml format, and can

be exported to PDF. This QMRF editor has been extended to meet the new requirements within the OpenTox

framework. As described in section 6.1, the QMRF editor will start and directly download the respective QMRF

report when adding the suffix ‘/editor’ to the QMRF report URI.33 It is further possible to manually download

another report from the web service. Figure 6 shows a screenshot of the new QMRF editor when manually

downloading a report. Moreover, the user can upload changes to the web service, by either overwriting the

existing report, or creating a new report on the server.34

Figure 6: Download a QMRF report with the QMRF editor

4.2.2 QPRF Editor (Q-edit)

Q-edit is a new QPRF editor developed under OpenTox which aims at exploiting implemented web services to

provide functionalities that facilitate the creation of QPRF reports by an end user. The editor is designed in a

wizard style manner, starting with defining a compound, then entering general information and using a

predictive model, and completing with exporting a report as PDF.

33 Open opentox.informatik.uni-freiburg.de/validation/reach_report/QMRF/3/editor with a Java Web Start-

enabled browser.

34 The new version of the QMRF editor supports Authorization & Authentication

http://opentox.informatik.uni-freiburg.de/validation/reach_report/QMRF/3/editor

Final Validation Routines

 19

Briefly, the main use case consists of the following steps:

a) Create a new (empty) QPRF report (see Figure 7).

Figure 7: Create a new report

b) Search for a compound in an on-line database (e.g. AMBIT) (see Figure 8) – Inspect the downloaded

compound (View Chemical name(s), SMILES string, CAS RN and a depiction of the compound). Enter

additional meta information about the compound, e.g. discuss its stereo-chemical features that might

affect the validity of the prediction. (see Figure 9)

Figure 8: Load a compound from a remote service

Figure 9: Information loaded from OpenTox web services are presented to the user

The "Details" button gives one access to the various structural attributes of the compound such as its

SMILES string as well as to other identifiers including the CAS registration number and the INECS

number (see Figure 10).

Final Validation Routines

 20

Figure 10: Details about the chemical compound found online

The user is then expected to discuss the stereo-chemical structural attributes of the compound that

can possibly affect the reliability of the prediction. The "Stereo" button in the toolbar of the same view

will open a new dialog box in which this information should be provided (Figure 11).

Figure 11: Considerations on stereo-chemical features of the compound

A list of synonyms is also loaded but the user might need to add or remove some synonym that is

invalid according to the user’s opinion (see Figure 12).

http://opentox.ntua.gr/images/compound-details.jpg
http://opentox.ntua.gr/images/compoundstereo.jpg

Final Validation Routines

 21

Figure 12: Adding and removing of synonyms

c) Provide general information about the QPRF report:

The authors of the reports are included using the wizard which can be entered under the second tab.

Figure 13a: Adding an author for the QPRF report

Figure 13b: Entered authors for a QPRF report

d) Loading of models: models can be loaded using a URI, as listed via

http://opentox.ntua.gr:8080/model and http://apps.ideaconsult.net:8080/ambit2/model and are

entered in the respective field in the “Model”-tab (see Figure 14). In case the model is password

protected, like with the QMRF Editor, the user has to supply their user credentials or log in as a guest

(Figure 15).

http://opentox.ntua.gr/images/add-author.jpg
http://opentox.ntua.gr/images/author.jpg

Final Validation Routines

 22

Figure 14: Loading of a model given its URI

Figure 15: Supplying user credentials

Once the model has been loaded the details are displayed, including training dataset features used as

well as the parameters used for model construction (see Figures 16 and 17).

Figure 16: Model details

Figure 17: Model parameters

e) A list of structural analogues can be retrieved on the basis of some similarity index provided by the

user. Under the tab "Applicability" one finds the tab "Structural Analogues" where one can provide a

similarity threshold in the range 0.5 - 1.0 and click on the button "Acquire List" to get a list of

compounds that are similar to the one submitted in the beginning. This is illustrated in the following

screenshot where the analogues of sucrose (up to 95% similarity) are listed (see Figure 18)

http://opentox.ntua.gr/images/enter-model-uri.jpg
http://opentox.ntua.gr/images/model-details.jpg

Final Validation Routines

 23

Figure 18: Structural analogues

Once a model is loaded, then one can download all experimental values for each of the structural

analogues. Finally, after the list of structural analogues is loaded and one of them is selected, one can

inspect its structural information available by clicking on the button "Compound Info" which is found in

the toolbar (see Figure 19).

Figure 19: Information about structural analogues

f) Export the report in PDF format. The resulting document is fully compliant with the standards for QPRF

reports that are provided by the EC JRC35.

Users are guided through the above steps with jargon-free documentation that map directly to the sections of

the QPRF report as described by the EC JRC. Though it can be used in offline mode, Q-edit is designed to

interact with various OpenTox web services providing real-time access to compound databases and model

35 ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/qrf/QPRF_version_1.1.pdf

http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/qrf/QPRF_version_1.1.pdf
http://opentox.ntua.gr/images/stranalogues.jpg
http://opentox.ntua.gr/images/straninfo.jpg

Final Validation Routines

 24

repositories. QPRF reports are serialized in a compressed binary format so that save/open operations are

supported. However, for the sake of uniformity and transparency, QPRF reports are stored in RDF format.

Q-Edit is a tool that allows users to create new prediction reports, and to manage and inspect existing ones.

The Q-edit application is written in Java using JDesktop, Swing and AWT and is licensed under the GNU GP

License, v.3.0. The source code is available for download from github.com/alphaville/Q-edit and the

executable can be downloaded from github.com/alphaville/Q-edit/downloads. It can also be compiled as a

Java Web Start application.

5 Validation Routines for Confidential Data

Authentication36 and Authorization37 (abbreviated as A&A) form the core of network security with Accounting

being the third 'A' of the trilogy38. Authentication is the process of trusting a user's alleged identity by

requiring certain evidence such as pairs of id and password or attested digital certificates by some trusted

authority. To put it simply, authentication is about confirming that the users are those that they claim to be.

Authorization is a process that follows authentication and determines access privileges to the system including

– but not limited to – retrieval of information from databases and use of web services or other functions of the

system. So authorization determines whether a particular authenticated individual has the right to perform a

given action and thus frames users with certain restrictions. Finally, Accounting refers to the tracking of

actions of a particular authenticated user, for example the access and use history of particular services and the

consumption of resources such as storage and computational usage.

5.1 REACH legislation and confidential data

As REACH comes into action, thousands of data sheets regarding chemical substances along with safety and

exposure information have been registered in a central database run by the European Chemicals Agency (EChA)

in Helsinki39. The Agency acts as the central point in the REACH system: it manages the databases necessary to

operate the system, co-ordinates the in-depth evaluation of suspicious chemicals and is building up a public

database in which consumers and professionals can find hazard information.

According to REACH, the industries are assumed to shoulder the burden of managing the risks of the human

contact with chemical substances (in food, cosmetics, etc.) and report to the EU accordingly. EChA publishes

information it holds on registered substances free of charge on the Internet. However, in certain cases,

information can be withheld, if the registrant submitting the information also submits a justification as to why

publishing the information would be potentially harmful to the commercial interests of the registrant or any

other party concerned. EChA will not publish the information concerned, if justification is accepted as valid40.

Towards this direction, REACH-relevant software frameworks such as OpenTox should take into account these

confidentiality issues. In the light of these REACH issues, a robust authentication and authorization design is

rendered a requirement for the OpenTox framework.

36 en.wikipedia.org/wiki/Authentication

37 en.wikipedia.org/wiki/Authorization

38 en.wikipedia.org/wiki/AAA_protocol

39 echa.europa.eu/

40 echa.europa.eu/doc/reachit/dsm_16_confidentiality_claims.pdf

http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Authorization
http://en.wikipedia.org/wiki/AAA_protocol
http://echa.europa.eu/
http://echa.europa.eu/doc/reachit/dsm_16_confidentiality_claims.pdf

Final Validation Routines

 25

5.2 Authentication and authorization in OpenTox

Within OpenTox, the principles of network security are materialized by means of a central access control

system based on Single Sign-On (SSO). Accounting is currently delegated to service providers according to

their processing and storage resources. It is fundamental for a distributed system like OpenTox to provide a

structured and robust access control system that enables administrators and system providers to:

 Flexibly specify and modify access privileges to users and user groups

 Segregate public and private data

 Protect users' private information such as passwords

 Build web services decoupled from the A&A infrastructure (administrative access to some database may

not be necessary) or even provide completely public services without A&A

For these reasons, SSO was chosen as the security mechanism in OpenTox. The principles of SSO and how

these bind with REST and OpenTox web services, was previously described in detail in the OpenTox Report on

Tools for Access to Confidential Information41. The REST API for accessing the SSO infrastructure is described

in the OpenTox API 1.2 at http://www.opentox.org/dev/apis/api-1.2/AA

5.2.1 Topological description of access control

The realization of access control in OpenTox is currently based on a central SSO server which is employed by

individual web services to decide on a user’s access to them or to other services to which the former act as

gateways or proxies. Figure 20 depicts the main concept and how services interact with the single access

control manager when a single service is involved.

The client identifies itself providing an authentication token42 to the OpenTox web service it wants to access.

Tokens are generated by the SSO services upon request (over a secure TLS-encrypted connection43, i.e. a

connection using the Transport Layer Security protocol as described by the RFC-524644 specifications) of the

user's identifier and password (user credentials) and have a certain lifetime. In the current implementation,

tokens stay active for 24 hours unless they are invalidated by the client. The web service receives this token,

and using the SSO service, checks whether the token is valid (corresponds to a logged in user) and whether

that user is granted the necessary privileges to perform the request. If authentication or authorization fails, a

status code 40145 is returned to the user along with an error report46.

41 http://www.opentox.org/data/documents/development/opentoxreports/opentoxreportd33/view?searchter

m=D3.3

42 en.wikipedia.org/wiki/Security_token

43 en.wikipedia.org/wiki/Transport_Layer_Security

44 tools.ietf.org/html/rfc5246

45 HTTP Status code 401 definition: www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

46 OpenTox specifications for Asynchronous Tasks and Error Reports: http://opentox.org/dev/apis/api-

1.2/AsyncTask

http://en.wikipedia.org/wiki/Security_token
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://tools.ietf.org/html/rfc5246
file:///F:/martin/AppData/Local/Temp/OpenTox%20specifications%20for%20Asynchronous%20Tasks%20and%20Error%20Reports:%20http:/opentox.org/dev/apis/api-1.2/AsyncTask
file:///F:/martin/AppData/Local/Temp/OpenTox%20specifications%20for%20Asynchronous%20Tasks%20and%20Error%20Reports:%20http:/opentox.org/dev/apis/api-1.2/AsyncTask

Final Validation Routines

 26

Figure 20: Protection of confidential information in the request-response chain

In case the initial client request induces a second request from the invoked service, this is always done on

behalf of the user using the provided token. This token is passed to the next service(s) of the workflow and in

case authorization fails somewhere in the middle, an error report is generated and propagated backwards to

the client with a status code 40147. In the scheme described in Figure 21, service 1 passes to the remote

service the token of the user that initiated the request. In this way, it is guaranteed that an end user will not

access either directly or indirectly (through some other service) confidential data, unless he is authorized to do

so.

Figure 21: Protection of confidential data in a multi-service application

5.2.2 Managing access

Access to confidential data is secured by the SSO service. The way in which this service allows or blocks an

action on an OpenTox web service is specified by the policy for the underlying resource. A policy over a

47 HTTP Status code 401 – Unauthorized: http://www.w3.org/Protocols/rfc2616/rfc2616-

sec10.html#sec10.4.2

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Final Validation Routines

 27

resource (identified by its URI) defines to whom access is granted (Figure 22). The authorization policies for the

central SSO server are defined by the creator of each resource. SSO policies specify restrictions on the REST

level48 and with respect to some HTTP method. These restrictions apply either on individual users or on

groups.

From a programmatic point of view, a policy here is implemented as an XML file specifying explicitly to whom

access is allowed and under which conditions. This way a policy defines rules that specify who or what can

access these protected resources. The rules are, in effect, permissions describing when and how a user can

perform an action on a given protected resource. A user can be an individual or a group. In general, the

permissions define what a user can do to which resource and under what conditions.

For OpenTox, we provide a Policy Configuration Service (PCS) to define such preferences and manage the

policies. The service allows any registered user to define, modify, and revoke permissions on specific resources

(URIs). After creation, only the resource owner (the user who created it) can alter the policy.

Figure 22: Policy definition - A flexible way to assign privileges to individual users and groups

The policy for a new resource, is created by the owner of the resource, which is the individual that generates it

using some web service. For example when a user uploads a new dataset to a dataset server (using POST) the

PCS also creates a policy for it. The policy is created indirectly as the service that accepts the client's request

also creates the policy for it. Finally, we provide an example policy XML which is POSTed to the SSO policy

service to define access rules for the hypothetical resource http://opentox.org/s2 in Figure 23.

48 For a short explanation and reference to the REST commands, please see:

www.opentox.org/dev/framework/restweb

http://www.opentox.org/dev/framework/restweb

Final Validation Routines

 28

Figure 23: A policy in XML format

5.2.3 Policy Creation and management

When a client creates a resource, it should be able to specify a policy for it by passing some parameters to the

corresponding service. This can be done for simplicity using POST parameters like "policy=public" or

"allow_users_get=john,nick", "allow_users_post=nick" or "allow_groups_get=development,partner" etc. The

client should be able to specify a policy by providing an XML document for it. To avoid passing the policy as a

form parameter (in MIME-type application/x-form-urlencoded) a Header parameter can be used instead:

In Figure 24 the way policies are created is presented for the use case of model creation. The user that initiates

the training will either provide a policy XML on the header of the request or the policy definition is delegated to

the trainer. The default policy for models defines that only the creator is allowed to perform predictions and

delete the model while the RDF representation of the model is publicly available. Once the policy for the model

is created, only the creator is allowed to modify it and grant specific access to other users and/or groups.

Policy = "Policy: <XML for policy>"

<?xml version="1.0" encoding="UTF-8"?>

<Policies>

<Policy name="s2_policy" createdby="id=amadmin,ou=user,dc=opensso,dc=java,dc=net"

lastmodifiedby="id=amadmin,ou=user,dc=opensso,dc=java,dc=net"

creationdate="1275290803394"2">

 <Rule name="s2 rule lastmodifieddate="1275290803394"

 <ServiceName name="iPlanetAMWebAgentService"/>

 <ResourceName name="http://opentox.org/s2"/>

 <AttributeValuePair>

 <Attribute name="POST"/>

 <Value>allow</Value>

 </AttributeValuePair>

 <AttributeValuePair>

 <Attribute name="GET"/>

 <Value>allow</Value>

 </AttributeValuePair>

 </Rule>

 <Subjects name="s2 subject 2" description="">

 <Subject name="amaunz" type="LDAPUsers" includeType="inclusive">

 <AttributeValuePair>

 <Attribute name="Values"/>

 <Value>uid=amaunz,ou=people,dc=opentox,dc=org</Value>

 </AttributeValuePair>

 </Subject>

 </Subjects>

</Policy></Policies>

Final Validation Routines

 29

Figure 24: Policy creation in model training

5.2.4 Evaluation of the current access control system

The following evaluation not only provides an insight, from the web service developer point of view, regarding

the access control system of OpenTox but also justifies the raison d'être for it. The adoption of SSO as an

access control system for OpenTox offers the following features:

4. The web services are designed, implemented and deployed without the need for the maintenance of a

local users' database. No administrators or privileged users are needed to deploy an OpenTox web

service thus underlining the open nature of the framework since everyone can design and deploy an

OpenTox-based service. Therefore, the web services are disengaged from the authentication and

authorization infrastructure (A&AI). Phishing49 opportunities are reduced to a minimum since users

provide their credentials only once for every session.

5. Reduces password fatigue50 as users are not required to remember as many pairs of username and

password as the OpenTox web services they need to access. It also reduces the time that the user

spends in entering passwords.

6. The client authenticates against the SSO service establishing an encrypted SSL/TLS connection and

using it to pass the pair of username and password. No credentials are transferred over unencrypted

connections and, more, these credentials are not passed to the individual services. The SSO service

verifies the received credentials against the opentox.org's user database (LDAP51) which is not exposed

to the network whatsoever.

7. The creator of a resource is responsible for its availability (public, private, etc). The data held by a web

service and their flow to third party users or groups of such is fully controlled by the creator.

What is considered to be a possible drawback of this design approach is that the SSO server is the most critical

node in the system. An outage of the SSO service will affect all services that depend on it.

49 Definition of phishing: en.wikipedia.org/wiki/Phishing

50 Definition of password fatigue: encyclopedia.thefreedictionary.com/password+fatigue

51 Project page of openLDAP: www.openldap.org/

http://en.wikipedia.org/wiki/Phishing
http://encyclopedia.thefreedictionary.com/password+fatigue
http://www.openldap.org/

Final Validation Routines

 30

5.2.5 OECD Principles

Validation services, even when running against confidential data, should satisfy the 5 OECD principles for

(Q)SAR validation. In particular, OpenTox validation web services comply with OECD principles 3 and 4, even

when confidential data are involved and A&A services are activated:

PRINCIPLE 3: "DEFINED APPLICABILITY DOMAIN"

OpenTox provides tools for the determination of applicability domains during the validation of (Q)SAR models

against confidential datasets.

PRINCIPLE 4: "APPROPRIATE MEASURES OF GOODNESS-OF-FIT, ROBUSTENESS AND PREDICTIVITY"

OpenTox provides scientifically sound validation routines for the determination of these measures.

5.3 Use Case description

The problem arises when different or seemingly conflicting access privileges are expected to occur regarding

models, datasets and other services. A client needs to validate a model against confidential data to which he

might have no access. Regarding user privileges, the following alternative cases may occur:

 Access to the test dataset

Access to the

QSAR model

Yes/Yes Yes/No

No/Yes No/No

The most representative cases are the Y/Y and the N/N case (as the Y/N and N/Y cases are actually sub-cases

of the N/N case). In case that the user has access both to the test dataset and the QSAR model (Y/Y), the

framework has to take care of the access privileges on any resources (datasets) created as predictions from the

model so that confidential information will not leak from the validation service. Current access control

infrastructure of OpenTox, combined with the REST architecture, caters for the protection of all these

resources. In the second case, where the user has not access either to the model or to the test dataset, it

becomes evident that a second user with enhanced privileges has to intervene and perform the validation on

behalf of the first user exposing back to him just the validation report but no information regarding the test

set and/or the model. For validation purposes OpenTox can provide a facility to test (Q)SAR models remotely

against confidential datasets without getting access to the actual entries of the database to ensure security and

confidentiality of proprietary data.

5.3.1 Use Case implementation

Current OpenTox implementations support the case where the end user provides his own dataset or has access

to the confidential dataset. When confidential data are held by public servers and these are to be used in a

validation session, it should be clear which new resources that are created replicate some part of these data

and under what kind of policies these resources are created. Validation lies in between all other OpenTox

services and creates models and datasets on behalf of the end user. In Figure 25 the validation procedure is

described regarding the service invocations involved.

Final Validation Routines

 31

Figure 25: Topological description of an OpenTox-compliant validation service (interactions with other web

services)

All service invocations mentioned above (validation request, model training, predictions) are performed using

the end user's authentication token. In case a new resource is to be created, as for example in the case a model

is trained or a dataset with predicted values is created on a dataset service, a policy is defined by the

corresponding service that creates the resource (using again the user's token) and is POSTed to the policy

service. All created models and datasets with predictions “belong” to the user that initiated the validation and

only that user can amend their access options.

6 Validation examples using confidential data

Two different examples are presented in this section. The first example shows the seamless integration of the

A&A concept into the OpenTox application ToxCreate. The user does not have to worry about security issues

while he benefits from the comfort of a Graphical User Interface (GUI). The second example gives more

technical insights: a remote confidential dataset is validated using the command line tool cURL52. This example

emphasizes how confidentiality is guaranteed with locally distributed web services.

52 URL is a command-line tool serving as an HTTP client. See curl.haxx.se

http://curl.haxx.se/

Final Validation Routines

 32

6.1 Validation against confidential data with ToxCreate

ToxCreate53 is a web-based application developed within the OpenTox framework. It is based on various

OpenTox web services and provides model creation, validation and the prediction of compounds with the

created models54. The user can use already created models, or upload a new dataset to train a new model. This

example focuses on the latter use case: assuming that the data provided by the user is confidential, no other

user should be able to access the uploaded dataset or resources created on the basis of this dataset, unless the

creator provides an override to this default to specific users.

In ToxCreate the user is automatically logged in as guest. The application is organized with multiple tabs (see

Figure 26). The user can login at the ‘Login’ tab. This demonstration is performed with the test-user ‘alu_test’

(password is ‘alu_test’ as well).

Figure 26: Login screen of ToxCreate

After logging in (Figure 27), the current user switches from ‘guest’ to ‘alu_test’, as shown on the top right of

the web page. It is now possible to safely upload the confidential dataset. For this example a publicly available

dataset from the Carcinogenic Potency Database (CPDB) was chosen: the hamster carcinogenicity dataset

contains 85 compounds55. A binary target variable indicates whether the compound is active or inactive. This

dataset can be uploaded from your local hard drive at the ‘Create’ tab of ToxCreate (Figure 27).

53 The latest production version of ToxCreate running at www.toxcreate.org

54For more info on ToxCreate see http://opentox.net/dev/testing/testcasedevelopment/toxcreate

55 Available at https://github.com/helma/opentox-test/blob/master/data/hamster_carcinogenicity.csv

http://toxcreate.org/
http://opentox.net/dev/testing/testcasedevelopment/toxcreate
https://github.com/helma/opentox-test/blob/master/data/hamster_carcinogenicity.csv

Final Validation Routines

 33

Figure 27: User interface provided by ToxCreate for uploading a training dataset

When the ‘Create model’ button is pressed, ToxCreate automatically switches to the ‘Inspect’ tab. In the

background the dataset is uploaded and a model building and validation process is initialized:

 The dataset is uploaded to the dataset web service, and registered at the A&A server to allow access to

user ‘alu_test’ (and the group of this user) only.

 Structural features are mined on this dataset and a lazar model is built. This model can be used later

on to make predictions (‘Predict’ tab).

 A 10-fold cross-validation to evaluate the predictive power of this model on the dataset is performed.

This splits the datasets into 10 folds, and repeatedly builds a model on 9 different folds of the 10

dataset folds. The resulting model is used to predict the test dataset (the fold that was left out when

building the model). The final results of this cross-validation are shown in the validation section of the

model’s properties. More details are available in the validation report.

 Finally a QMRF report is automatically created for this model. It contains meta-information on the

trained model and the algorithm, the validation results, and other information about the model.

The results of these steps are gradually added to the new ‘Hamster Carcinogenicity’ model that is available on

the ‘Inspect’ tab, until the status is finally set to completed (Figure 28).

Final Validation Routines

 34

Figure 28: An overview of a QSAR model produced within the ToxCreate application

The user can now have a look at the detailed validation report, edit the QMRF report with the QMRF editor, or

make predictions with the newly created model.

Note that the resources (dataset, model, validation report, etc…) are only available to user ‘alu_test’. After

logging out, the user ‘guest’ has no access to the newly created Model ‘Hamster Carcinogenicity’; it is not

available in the ‘Inspect’ tab of ToxCreate.

6.2 Validation against validation data using distributed web services

This example demonstrates how a dataset is protected by A&A and SSL when used for validation. The use case

is a training-test-split validation. This is an established method to estimate the performance of a prediction

model on unseen data56: the original dataset is split into a training data set and a test data set. The training

data set is used to build a model. The model is then applied to make predictions on the unseen test dataset.

In the use case presented here, we use the well-known Caco-2 dataset57. The dataset consists of 100 organic

molecules with a numeric endpoint (Caco-2 permeability, logPapp). The dataset was uploaded to the AMBIT2

dataset service (It is available with A&A at https://ambit.uni-plovdiv.bg:8443/ambit2/dataset/R401560). 27

56 More extensive techniques like cross-validation should be preferred especially if the training dataset is

small. The simpler training test split method is chosen for proof of concept.

57 pubs.acs.org/doi/suppl/10.1021/ci049884m

http://pubs.acs.org/doi/suppl/10.1021/ci049884m

Final Validation Routines

 35

numerical features have been calculated using AMBITs descriptor calculation services58. A linear regression

algorithm (https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/LR) was selected to predict the target

variable. Both, the dataset as well the algorithm service are located in Sofia, Bulgaria. The validation server is

located at the University of Freiburg, Germany.

We are executing this example with the command line tool curl (http://curl.haxx.se/), using the functionality

specified in the OpenTox API59. Alternatively, the REST calls could be performed with any programming

language that includes a REST library. To this end, the validation routines can be integrated into an application

with a GUI (like in the ToxCreate example above).

6.2.1 Login:

The first step is to derive a subject-id from the SSO-server, for the user ’guest’: 60

The curl call returns the following:

This string can now be used to identify the client as user ’guest’ in the subsequent cURL calls. The access to all

resources that are created with this subject-id will only be granted to user ‘guest’ (and the group of this user).

6.2.2 Start validation:

The validation is initialized with a HTTP POST call to http://opentox.informatik.uni-

freiburg.de/validation/training_test_split. The parameters to control the routine are algorithm-URI, dataset-URI

and prediction-feature. The subject-id is specified as additional header (with –H option):

The validation service returns the URI of a task object, while running the validation as an asynchronous

background job. The result is stored in the task object when the job is finished.

Get validation result-URI:

58 See for example: https://ambit.uni-

plovdiv.bg:8443/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.AtomCountDescriptor

59 Documentation for the OpenTox API http://opentox.org/dev/apis/api-1.2

60 The cURL calls (presented in purple boxes) can be copied to and executed with a command-line interface.

The return value is marked in green (success) or orange (error) boxes.

curl -X POST -d "username=guest" -d "password=guest" http://opensso.in-
silico.ch/opensso/identity/authenticate?uri=service=openldap

token.id= AQIC5wM2LY4SfczngIclWu3ztAWK7WKXHfAFK+CI8Rvf5zU=@AAJTSQACMDE=#

curl -X POST -d algorithm_uri="https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/LR"

-d dataset_uri="https://ambit.uni-plovdiv.bg:8443/ambit2/dataset/R401560" -d

prediction_feature="https://ambit.uni-plovdiv.bg:8443/ambit2/feature/22190"

http://opentox.informatik.uni-freiburg.de/validation/training_test_split -H

"subjectid:AQIC5wM2LY4SfczngIclWu3ztAWK7WKXHfAFK+CI8Rvf5zU=@AAJTSQACMDE=#"

http://opentox.informatik.uni-freiburg.de/task/1004

https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.AtomCountDescriptor#_blank
https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.AtomCountDescriptor#_blank
http://opentox.org/dev/apis/api-1.2
http://opentox.informatik.uni-freiburg.de/task/1004

Final Validation Routines

 36

Task resources are not protected, which is why the following cURL call does not need to include the subject-id:

Using cURL on the task-URI returns a list of its properties, including the field result-URI that contains the

validation-URI.

Get validation result:

The following cURL call demonstrates that the validation result http://opentox.informatik.uni-

freiburg.de/validation/114 is protected by the A&A routines:

Access is denied, and an error report is returned instead. However, we can access this resource when

specifying the subject-id:

curl http://opentox.informatik.uni-freiburg.de/task/1004 -H "Accept:application/x-

yaml"

http://purl.org/dc/elements/1.1/title: Perform training test split validation

http://www.opentox.org/api/1.1#hasStatus: Completed

http://www.opentox.org/api/1.1#resultURI: http://opentox.informatik.uni-

freiburg.de/validation/114

http://www.opentox.org/api/1.1#percentageCompleted: 100.0

[…]

curl http://opentox.informatik.uni-freiburg.de/validation/114

--- !ruby/object:OpenTox::ErrorReport

actor: http://opentox.informatik.uni-freiburg.de/validation/114

errorType: OpenTox::NotAuthorizedError

http_code: 401

message: Not authorized

[…]

http://opentox.informatik.uni-freiburg.de/validation/training_test_split

curl http://opentox.informatik.uni-freiburg.de/validation/114 -H

"subjectid:AQIC5wM2LY4SfczngIclWu3ztAWK7WKXHfAFK+CI8Rvf5zU=@AAJTSQACMDE=#"

Final Validation Routines

 37

The validation object links to resources that have been used for validation, e.g., training and test data sets. The

latter have been created by splitting the original dataset, and are located at Freiburg’s dataset service.

Create report:

We finally create a validation report from the validation resource:

Again this call returns a task object first (skipped for simplicity). Accessing this task reveals the report-URI:

Visit validation report with browser:

The validation report could be requested with cURL as well, but is best viewed with a web browser. As it is

protected by A&A, access is denied for http://opentox.informatik.uni-

freiburg.de/validation/report/validation/14 (Figure 29).

http://www.opentox.org/api/1.1#model: https://ambit.uni-

plovdiv.bg:8443/ambit2/model/35009

http://www.opentox.org/api/1.1#trainingDataset: http://opentox.informatik.uni-

freiburg.de/dataset/452

http://www.opentox.org/api/1.1#predictionDataset: http://opentox.informatik.uni-

freiburg.de/dataset/454

http://www.opentox.org/api/1.1#predictionFeature: https://ambit.uni-

plovdiv.bg:8443/ambit2/feature/22190

http://www.opentox.org/api/1.1#numInstances: 32

http://www.opentox.org/api/1.1#testTargetDataset: https://ambit.uni-

plovdiv.bg:8443/ambit2/dataset/R401560

http://www.opentox.org/api/1.1#validationType: training_test_split

http://www.opentox.org/api/1.1#testDataset: http://opentox.informatik.uni-

freiburg.de/dataset/453

http://www.opentox.org/api/1.1#algorithm: https://ambit.uni-

plovdiv.bg:8443/ambit2/algorithm/LR

http://www.opentox.org/api/1.1#regressionStatistics:

 http://www.opentox.org/api/1.1#rootMeanSquaredError: 0.627121310539419

 http://www.opentox.org/api/1.1#rSquare: 0.352408295243186

curl -X POST -d validation_uris="http://opentox.informatik.uni-

freiburg.de/validation/114" http://opentox.informatik.uni-

freiburg.de/validation/report/validation -H

"subjectid:AQIC5wM2LY4SfczngIclWu3ztAWK7WKXHfAFK+CI8Rvf5zU=@AAJTSQACMDE=#"

http://www.opentox.org/api/1.1#resultURI: http://opentox.informatik.uni-

freiburg.de/validation/report/validation/14

[...]

Final Validation Routines

 38

Figure 29: Protected resources do not allow unauthorized access - access has been denied to a validation

report

The user has to login as guest61 (using the link at the top right of the browser, password is ‘guest’). This stores

the subject-id in a cookie that will identify the user to the validation web service with the web browser. Hence,

the second attempt to visit http://opentox.informatik.uni-freiburg.de/validation/report/validation/14 is

successful. The user is provided with the validation report (Figure 30).

61 Login screen for validation service: http://opentox.informatik.uni-freiburg.de/validation/login

http://opentox.informatik.uni-freiburg.de/validation/login

Final Validation Routines

 39

Figure30: Successful access to the validation report

Final Validation Routines

 40

7 Validation against confidential data using standalone version

7.1 Standalone Installation of OpenTox Web Services

A distributed system over the Internet has convenience and extensibility advantages due to its high flexibility

and easy integration of new services. However, its security is questioned by certain users, because even when

encrypted, data are still transferred over the Internet and it might be possible for someone to eavesdrop the

communication and steal sensitive information (Figure 31). The authorization and authentication strategy

adopted in OpenTox and the overall security system provide a high level of protection of confidential data. We

understand, however, that toxicity data can be considered highly confidential and sensitive by their owners and

even a slight possibility of leakage might be an obstacle for potential end users of OpenTox services and

applications.

Figure 31: Eavesdropping of sensitive information

In order to minimize as much as possible the risk of data leakage, OpenTox offers an alternative

implementation of the use case, which is based on a stand-alone local installation of some or all OpenTox

services. The alternative approach is considered as the most secure way to seal data, namely to protect them

physically prohibiting any kind of interaction with others and restraining their mobility within an isolated

system. Complete physical isolation of the system means that the application runs on a machine either

disconnected from the Internet (or any other network) or protected by means of firewalls. A virtual private

network can also be established (Figure 32), again isolating the nodes of the distributed application from the

rest of the network and also protecting the client-server communication using secure cryptographic tunnelling

protocols.

Figure 32: Topological structure of a virtual private network established over the Internet or some Local Area

Network

Final Validation Routines

 41

The local installation of OpenTox web services along with web interfaces that facilitate their consumption is

feasible since all projects under OpenTox are freely distributed (executables, documentation and source code)

and are available on-line from the www.opentox.org website62. All service providers offer the ability to

download and install individual web service implementations locally either as standalone applications or in a

Servlet container (such as Apache Tomcat63). In the case of a servlet container, the web service

implementations come as “web archive” files (.war).

In all cases documentation is provided regarding the installation of prerequisites such as the MySQL database

server or a J2EE-compatible servlet container such as Apache Tomcat.

7.2 Standalone Installation of particular services

This section describes how a user can install locally three OpenTox services namely AMBIT, Jaqpot, and

ToxCreate. The AMBIT web service package is one of the several existing independent implementations of the

OpenTox Application Programming Interface and is built according to the principles of the Representational

State Transfer (REST) architecture. The Open Source Predictive Toxicology Framework, developed by partners of

the EC FP7 OpenTox project, aims at providing a unified access to toxicity data and predictive models, as well

as validation procedures. This is achieved by i) an information model, based on a common OWL−DL ontology;

ii) links to related ontologies; iii) data and algorithms, available through a standardized REST web services

interface, where every compound, data set or predictive method has a unique web address, used to retrieve its

Resource Description Framework (RDF) representation, or initiate the associated calculations.

The Jaqpot web services are OpenTox API 1.2-compliant web services. Jaqpot is a web application that

supports model training and data preprocessing algorithms such as multiple linear regression, support vector

machines, neural networks (an in-house implementation based on an efficient algorithm), an implementation

of the leverage algorithm for domain of applicability estimation and various data preprocessing algorithms

such as PLS and data cleanup. Jaqpot also comes with a web service for storing BibTex64 entries which become

also available in JSON and RDF formats. Jaqpot provides asynchronous execution of tasks submitted by users,

authentication, authorization and accounting mechanisms powered by OpenSSO and two monitoring access

points mounted at /monitoring and /status.

ToxCreate is a QSAR web application that has been developed in OpenTox. It derives nearest neighbours of the

query structure and uses those to learn a model. Currently, it is being extended to accommodate any

OpenTox-compliant model and dataset service.

7.2.1 AMBIT

The user downloads the AMBIT 2.0 application (http://www.ideaconsult.net/downloads/ambit2/ambit2.war)

and saves the file ambit2.war. With his web browser, he navigates to http://localhost:8080, and clicks on

“Tomcat Manager” in the Administration box at the top-left of the screen. He is prompted to enter the user

name and password of the Tomcat manager/administrator he has set up. On the manager page, he scrolls to

the bottom and finds the box entitled “WAR file to deploy”65.

62 OpenTox downloads: http://www.opentox.org/downloads

63 Apache Tomcat home page: http://tomcat.apache.org/index.html

64 BibTeX specifications online: http://www.bibtex.org/

65 More documentation regarding deployment on a Tomcat servlet container can be found online at

http://tomcat.apache.org/tomcat-6.0-doc/deployer-howto.html

http://www.opentox.org/downloads
http://tomcat.apache.org/index.html
http://www.bibtex.org/
http://tomcat.apache.org/tomcat-6.0-doc/deployer-howto.html

Final Validation Routines

 42

Figure 33: Screenshot from the deployment of AMBIT on a tomcat servlet container

Under “WAR file to deploy”, he clicks “Browse...”, finds ambit2.war and clicks “Deploy”. Following these steps,

he has successfully installed the AMBIT 2.0 implementation of the OpenTox REST API. If he next navigates to

http://localhost:8080/abmit2 he should see the welcome screen of AMBIT2. As explained in the installation

instructions for AMBIT 2.0 (ambit.sourceforge.net), this release (September 2010) comes without an embedded

database (Figure 33).

An empty database can be created using cURL (curl.haxx.se). On many linux systems, cURL can be easily

installed from a package repository using a standard package manager. It can also be downloaded from

http://curl.haxx.se/download.html. Under Windows, there are two options for using cURL: 1) installing cURL

natively, preferably using the most recent generic Win32 version: http://curl.haxx.se/download.html, or 2)

installing the VMWare Player (see online http://www.vmware.com/products/player/) and running a small Linux

environment (http://www.maunz.de/opentox/dsl-4.1.zip) under Windows (after installing VMWare Player and

unpacking the dsl-4.1.zip file, just double-click the dsl-4.1.vmx file). Under Linux, after installing cURL, the

following command can be typed as root in a console:

7.2.2 Jaqpot

A user can download and install Jaqpot on their local machine following these instructions (Tested on Ubuntu,

Debian and Mac OS X operating systems). First, he needs to install on his system the following:

1. MySQL database server and client

2. Maven2

3. Git

$ curl -X POST -d "dbname=ambit2" -d "user=mysqladminuser" -d

"pass=mysqladminpass" http://localhost:8080/ambit2/admin/database

Final Validation Routines

 43

The dependencies #2 and #3 are optional but will facilitate a lot the installation of Jaqpot. The commands

needed for downloading the latest version of Jaqpot are the following:

and Jaqpot will start on port 8080 (see http://localhost:8080/jaqpot).

7.2.3 ToxCreate

ToxCreate is distributed as a ready-to-use virtual machine (appliance). This offers several advantages over

traditional installers:

- The appliance is deployed anywhere in minutes, not even administrative privileges are needed on a

Windows machine66.

- The appliance can be deployed, as is, on virtual servers or cloud-based services. By extracting the

filesystem from the virtual hard disk, the Linux operating system is also installed quickly on a

physical machine.

A local installation of ToxCreate is a fully functional QSAR solution and offers complete privacy. Installation

instructions and downloads can be found on: https://github.com/helma/opentox-

documentation/wiki/Installation-of-IST-OpenTox-webservices

8 Conclusions

This report summarizes the work that has been accomplished within the OpenTox Framework on the definition

and implementation of web services supporting rapid prototyping for the generation of REACH relevant

documents for validation in the form of standardized reports for (Q)SAR-based predictive toxicology models

and their predictions. The validation and reporting framework was implemented as RESTful web services, and is

available as open source applications in public repositories. The REST Web service architecture allows sharing

of data and functionality among loosely-coupled, heterogeneous systems, such that a seamless workflow is

possible using different system setups.

The validation services evaluate the performance of prediction algorithms. This is done by building models

with training datasets, and applying those prediction models to test datasets. The predicted values are

compared to the actual known outcome. The validation services in OpenTox provide a detailed description of

the result of such a validation. Furthermore, the enhanced QMRF Editor and the novel QPRF editor (Q-edit)

support the submission of the validation results to legislators.

The framework also supports validation against confidential data employing two distinct approaches: namely,

using authentication and authorisation (A&A) and by providing a standalone version of the complete OpenTox

services. Within this document we have described in detail, how A&A is implemented and used within the

framework. And finally we have shown two use-cases for the validation of confidential data.

66 See VirtualBox portable version, http://www.vbox.me

$git clone git://github.com/alphaville/jaqpot.git

$cd jaqpot/

$mvn clean package tomcat:run

http://www.vbox.me/

Final Validation Routines

 44

9 Appendix

9.1 Training test split report

Validation report

Created at 21.07.2011 - 11:30

Table of Contents

Results

Confusion Matrix

Plots

All Results

Predictions

Results

Table 1. Results

Validation uri http://opentox.informatik.uni-freiburg.de/validation/451

Model uri http://opentox.informatik.uni-freiburg.de/model/175

Training dataset uri http://opentox.informatik.uni-freiburg.de/dataset/1450

Test dataset uri http://opentox.informatik.uni-freiburg.de/dataset/1451

Prediction feature http://opentox.informatik.uni-freiburg.de/dataset/333/feature/SAL

Num instances 273

Num unpredicted 22

Accuracy 0.733

Weighted accuracy 0.807

Weighted area under roc 0.634

Area under roc true: 0.695, false: 0.583

F measure true: 0.712, false: 0.751

True positive rate 0.728

True negative rate 0.737

Confusion Matrix

Table 2. Confusion Matrix

actual

true false total

predicted true 83 36 119

false 31 101 132

total 114 137

Final Validation Routines

 45

Plots

Table 3. Plots for all predictions

Figure 1. ROC Plot

Figure 2. Percent Correct vs Confidence Plot

Table 4. Plots for predicted class-value 'true'

Figure 3. ROC Plot

Figure 4. Percent Correct vs Confidence Plot

Table 5. Plots for predicted class-value 'false'

Figure 5. ROC Plot Figure 6. Percent Correct vs Confidence Plot

http://opentox.informatik.uni-freiburg.de/validation/report/validation/51/roc_plot1.svg
http://opentox.informatik.uni-freiburg.de/validation/report/validation/51/conf_plot3.svg
http://opentox.informatik.uni-freiburg.de/validation/report/validation/51/roc_plot5.svg
http://opentox.informatik.uni-freiburg.de/validation/report/validation/51/conf_plot7.svg

Final Validation Routines

 46

All Results

Table 6. All Results

Validation uri http://opentox.informatik.uni-freiburg.de/validation/451

Validation type training_test_split

Model uri http://opentox.informatik.uni-freiburg.de/model/175

Algorithm uri http://opentox.informatik.uni-freiburg.de/algorithm/lazar

Training dataset uri http://opentox.informatik.uni-freiburg.de/dataset/1450

Prediction feature http://opentox.informatik.uni-freiburg.de/dataset/333/feature/SAL

Test dataset uri http://opentox.informatik.uni-freiburg.de/dataset/1451

Test target dataset uri http://opentox.informatik.uni-freiburg.de/dataset/333

Prediction dataset uri http://opentox.informatik.uni-freiburg.de/dataset/1453

Date Thu Jul 21 11:25:55 +0200 2011

Num instances 273

Num without class 0

Num unpredicted 22

Real runtime 170.141883134842

Percent without class 0.0

Percent unpredicted 8.05860805860806

Num correct 184

Num incorrect 67

Confusion matrix

confusion_matrix_predicted: true, confusion_matrix_actual: true: 83,

confusion_matrix_predicted: false, confusion_matrix_actual: true: 31,

confusion_matrix_predicted: true, confusion_matrix_actual: false: 36,

confusion_matrix_predicted: false, confusion_matrix_actual: false: 101

Percent correct 73.307

Percent incorrect 26.693

http://opentox.informatik.uni-freiburg.de/validation/report/validation/51/roc_plot9.svg
http://opentox.informatik.uni-freiburg.de/validation/report/validation/51/conf_plot11.svg

Final Validation Routines

 47

Weighted area under roc 0.634

Accuracy 0.733

Weighted accuracy 0.807

Num false positives 36

Num false negatives 31

Num true positives 83

Num true negatives 101

Area under roc true: 0.695, false: 0.583

False negative rate 0.272

False positive rate 0.263

F measure true: 0.712, false: 0.751

Precision true: 0.697, false: 0.765

True negative rate 0.737

True positive rate 0.728

Predictions

Table 7. Predictions

compound actual

value

predicted

value

classification confidence

value

compound-uri

true true

0.869

http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C14H12N4O2/c15-

5-1-2-6(16)10-9(5)13(19)11-7(17)3-4-

8(18)12(11)14(10)20/h1-4H,15-18H2

true true

0.821

http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C15H10O5/c1-6-2-

8-12(10(17)3-6)15(20)13-9(14(8)19)4-7(16)5-

11(13)18/h2-5,16-18H,1H3

true true

0.780

http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C7H15Cl2N2O2P/c8-

2-5-11(6-3-9)14(12)10-4-1-7-13-14/h1-

7H2,(H,10,12)

true false

0.635

http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C16H14ClN4O2/c1-

20(19-22)15-10-21(23)16(11-5-3-2-4-6-11)13-9-

12(17)7-8-14(13)18-15/h2-9,23H,10H2,1H3/q+1

true true

0.628

http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C3H6Br2O/c4-1-

3(5)2-6/h3,6H,1-2H2

Final Validation Routines

 48

9.2 Cross-validation report

Crossvalidation report

Created at 21.06.2011 - 13:33

Table of Contents

Crossvalidation Results

Plots

Results

All Results

Predictions

Crossvalidation Results

These performance statistics have been derieved by accumulating all predictions on the various fold (i.e. these

numbers are NOT averaged results over all crossvalidation folds).

Table 1. Crossvalidation Results

Crossvalidation uri http://opentox.informatik.uni-freiburg.de/validation/crossvalidation/18

Algorithm uri http://opentox.informatik.uni-freiburg.de/algorithm/lazar

Dataset uri http://opentox.informatik.uni-freiburg.de/dataset/556

Num folds 10

Num instances 569

Num unpredicted 10

Root mean squared error 37.97

Mean absolute error 6.46

R square 0.20

Plots

Figure 1. Regression plot

http://opentox.informatik.uni-freiburg.de/validation/report/crossvalidation/20/regr_plot1.svg

Final Validation Routines

 49

Figure 2. Percent Correct vs Confidence Plot

Figure 3. Percent Correct vs Confidence Plot

Results

Table 2. Results

Validation uri Crossvalidation

fold

Num

instances

Num

unpredicted

Root mean

squared

error

Mean

absolute

error

R square

http://opentox.informatik.uni-

freiburg.de/validation/172

1 57 0 21.09 7.64 0.10

http://opentox.informatik.uni-

freiburg.de/validation/173

2 57 1 28.06 9.10 0.32

http://opentox.informatik.uni-

freiburg.de/validation/174

3 57 0 5.39 1.71 0.12

http://opentox.informatik.uni-

freiburg.de/validation/175

4 57 0 46.45 7.38 4.17e-03

http://opentox.informatik.uni-

freiburg.de/validation/176

5 57 0 15.35 4.06 -0.040

http://opentox.informatik.uni-freiburg.de/validation/report/crossvalidation/20/conf_plot3.svg
http://opentox.informatik.uni-freiburg.de/validation/report/crossvalidation/20/conf_plot5.svg

Final Validation Routines

 50

Validation uri Crossvalidation

fold

Num

instances

Num

unpredicted

Root mean

squared

error

Mean

absolute

error

R square

http://opentox.informatik.uni-

freiburg.de/validation/177

6 57 2 42.50 7.05 0.52

http://opentox.informatik.uni-

freiburg.de/validation/178

7 57 3 19.77 4.77 0.15

http://opentox.informatik.uni-

freiburg.de/validation/180

8 57 1 89.69 15.14 0.11

http://opentox.informatik.uni-

freiburg.de/validation/181

9 57 3 4.71 1.80 0.54

http://opentox.informatik.uni-

freiburg.de/validation/182

10 56 0 21.61 5.84 -0.055

All Results

Table 3. All Results67

Validation

uri

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/172

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/173

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/174

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/175

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/176

Validation

type

crossvalidation crossvalidation crossvalidation crossvalidation crossvalidation

Model uri http://opentox.inf

ormatik.uni-

freiburg.de/model

/133

http://opentox.inf

ormatik.uni-

freiburg.de/model

/134

http://opentox.inf

ormatik.uni-

freiburg.de/model

/135

http://opentox.inf

ormatik.uni-

freiburg.de/model

/136

http://opentox.inf

ormatik.uni-

freiburg.de/model

/137

Algorithm

uri

http://opentox.inf

ormatik.uni-

freiburg.de/algorit

hm/lazar

http://opentox.inf

ormatik.uni-

freiburg.de/algorit

hm/lazar

http://opentox.inf

ormatik.uni-

freiburg.de/algorit

hm/lazar

http://opentox.inf

ormatik.uni-

freiburg.de/algorit

hm/lazar

http://opentox.inf

ormatik.uni-

freiburg.de/algorit

hm/lazar

Training

dataset uri

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/558

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/560

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/562

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/564

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/566

Prediction

feature

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556/feature/LC

50_mmol

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556/feature/LC

50_mmol

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556/feature/LC

50_mmol

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556/feature/LC

50_mmol

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556/feature/LC

50_mmol

Test http://opentox.inf http://opentox.inf http://opentox.inf http://opentox.inf http://opentox.inf

67 Modified to fit the page: 5 fold columns removed

Final Validation Routines

 51

dataset uri ormatik.uni-

freiburg.de/datase

t/559

ormatik.uni-

freiburg.de/datase

t/561

ormatik.uni-

freiburg.de/datase

t/563

ormatik.uni-

freiburg.de/datase

t/565

ormatik.uni-

freiburg.de/datase

t/567

Test target

dataset uri

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

Prediction

dataset uri

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/579

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/581

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/583

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/585

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/587

Date Tue Jun 21

13:06:03 +0200

2011

Tue Jun 21

13:08:47 +0200

2011

Tue Jun 21

13:11:26 +0200

2011

Tue Jun 21

13:13:59 +0200

2011

Tue Jun 21

13:16:33 +0200

2011

Num

instances

57 57 57 57 57

Num

without

class

0 0 0 0 0

Num

unpredicte

d

0 1 0 0 0

Real

runtime

151.7974388599

4

146.4431538581

85

140.8381531238

56

140.7759420871

73

158.5764129161

83

Percent

without

class

0.0 0.0 0.0 0.0 0.0

Percent

unpredicte

d

0.0 1.754385964912

28

0.0 0.0 0.0

Crossvalid

ation

18 18 18 18 18

Crossvalid

ation uri

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/crossvalidatio

n/18

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/crossvalidatio

n/18

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/crossvalidatio

n/18

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/crossvalidatio

n/18

http://opentox.inf

ormatik.uni-

freiburg.de/valida

tion/crossvalidatio

n/18

Crossvalid

ation fold

1 2 3 4 5

Root mean

squared

error

21.09 28.06 5.39 46.45 15.35

Mean

absolute

7.64 9.10 1.71 7.38 4.06

Final Validation Routines

 52

error

R square 0.10 0.32 0.12 4.17e-03 -0.040

Target

variance

actual

505.54 1182.66 33.69 2204.88 230.57

Target

variance

predicted

38.55 109.22 3.04 5.48 8.11

Sum

squared

error

25347.72 44080.13 1656.00 122958.13 13433.26

Sample

correlation

coefficient

0.46 0.80 0.43 0.28 0.11

Dataset uri http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

http://opentox.inf

ormatik.uni-

freiburg.de/datase

t/556

Num folds 10 10 10 10 10

Stratified false false false false false

Random

seed

1 1 1 1 1

Predictions

Table 4. Predictions

compound actual

value

predicted

value

confidence

value

compound-uri

0.38 0.14 0.93 http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C11H18N2O3/c1-4-11(6-5-

7(2)3)8(14)12-10(16)13-9(11)15/h7H,4-6H2,1-

3H3,(H2,12,13,14,15,16)

3.63 1.45 0.85 http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C5H8F4O/c1-

4(2,10)5(8,9)3(6)7/h3,10H,1-2H3

0.20 0.19 0.78 http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C11H18N2O3.Na/c1-4-6-

7(3)11(5-2)8(14)12-10(16)13-9(11)15;/h7H,4-6H2,1-

3H3,(H2,12,13,14,15,16);/q;+1/p-1

0.034 0.053 0.77 http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C8H18S2/c1-3-9-7-5-6-8-10-

4-2/h3-8H2,1-2H3

Final Validation Routines

 53

compound actual

value

predicted

value

confidence

value

compound-uri

0.18 0.027 0.77 http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C6H14S/c1-3-5-7-6-4-2/h3-

6H2,1-2H3

0.091 0.34 0.71 http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C12H18N2O3.Na/c1-4-6-

8(3)12(7-5-2)9(15)13-11(17)14-10(12)16;/h5,8H,2,4,6-

7H2,1,3H3,(H2,13,14,15,16,17);/q;+1/p-1

1.19 2.30 0.71 http://opentox.informatik.uni-

freiburg.de/compound/InChI=1S/C2H3F3O/c3-2(4,5)1-6/h6H,1H2

Final Validation Routines

 54

9.3 Algorithm comparison report

Algorithm comparison report

Created at 21.07.2011 - 10:57

Table of Contents

Dataset: http://apps.ideaconsult.net:8080/ambit2/dataset/603306

Average Results on Folds

Bar Plot

Paired t-test

Dataset: http://apps.ideaconsult.net:8080/ambit2/dataset/603306

Average Results on Folds

These performance statistics have been derived by computing the mean of the statistics on each

crossvalidation fold.

Table 1. Average Results on Folds

Identifier NaiveBayes SupportVectorMachine

Crossvalidation uri http://opentox.informatik.uni-

freiburg.de/validation/crossvalidation/47

http://opentox.informatik.uni-

freiburg.de/validation/crossvalidation/49

Crossvalidation report

uri

http://opentox.informatik.uni-

freiburg.de/validation/report/crossvalidatio

n/39

http://opentox.informatik.uni-

freiburg.de/validation/report/crossvalidatio

n/49

Algorithm uri http://apps.ideaconsult.net:8080/ambit2/al

gorithm/NaiveBayes

http://apps.ideaconsult.net:8080/ambit2/a

lgorithm/SMO

Num instances 83.000 83.000

Num unpredicted 0 0

Accuracy 0.706 ± 2.58e-03 0.689 ± 1.02e-04

Weighted accuracy 0 ± 0 0 ± 0

Weighted area under

roc

0 ± 0 0 ± 0

Area under roc pentration: 0 ± 0, no-penetration: 0 ± 0 pentration: 0 ± 0, no-penetration: 0 ± 0

F measure pentration: 0.807, no-penetration: 0.376 pentration: 0.805, no-penetration: 0.234

True positive rate 0.270 0.142

True negative rate 0.931 0.971

Final Validation Routines

 55

Bar Plot

Figure 1. Bar Plot

Paired t-test

Table 2. percent_correct, significance-level: 0.9, num results: 5

 NaiveBayes SupportVectorMachine

NaiveBayes

SupportVectorMachine

Table 3. weighted_area_under_roc, significance-level: 0.9, num results: 5

 NaiveBayes SupportVectorMachine

NaiveBayes

SupportVectorMachine

