

Deliverable D5.3

Validation against

confidential data

Grant Agreement Health-F5-2008-200787

Acronym OpenTox

Name An Open Source Predictive Toxicology Framework

Coordinator Douglas Connect

Contract No. Health-F5-2008-200787

Document Type: Deliverable Report

WP/Task: WP5

Name Validation against confidential data

Document ID: OpenTox Deliverable Report WP5

Date: 22/03/11

Status: Version 2.2

Organisation:

Contributors Pantelis Sopasakis (PS)

Haralambos Sarimveis (HS)

Martin Gütlein (MG)

Tobias Girschick (TG)

Fabian Buchwald (FB)

Andreas Maunz (AM)

Barry Hardy (BH)

Andreas Karwath (AK)

Vedrin Jeliazkov (VJ)

NTUA

NTUA

ALU-FR

TUM

TUM

ALU-FR

DC

ALU-FR

IDEA

Distribution: Public

Purpose of Document: To disseminate results on procedures for the validation of confidential

toxicity data within the OpenTox Framework

Document History: 1 – Initial draft prepared on Feb 8, 2011

2 – Added validation examples on Feb 12 by MG

3- Added descriptions of stand-alone applications on Feb 22 by PS

4- First revision on Feb 22, 2011 by TG, FB

5– Modifications following the comments by Tobias & Fabian

6- Minor adjustments and reformatting of curl boxes by MG, Feb24

7- Additions to local installation use case

8- Review by BH

9- Reply to BH's comments and modifications

10-Final Review

Deliverable Report

 2

Table of contents

Table of contents .. 2

Table of figures .. 3

Summary .. 4

1. Introduction ... 5

2. Validation against confidential data using authentication and authorization 5

2.1 REACH legislation and confidential data .. 6

2.2 Authentication and authorization in OpenTox ... 6

2.2.1 Topological description of access control .. 7

2.2.2 Managing access ... 9

2.2.3 Policy Creation and management .. 11

2.2.4 Evaluation of the current access control system .. 11

2.2.5 OECD Principles ... 12

2.3 Use Case description ... 13

2.3.1 Use Case implementation .. 13

3. Validation examples using confidential data ... 15

3.1 Validation against confidential data with ToxCreate 15

3.2 Validation against validation data using distributed web services 19

4. Validation against confidential data using standalone version 25

4.1 Standalone Installation of OpenTox Web Services ... 25

4.2 Standalone Installation of particular services ... 26

4.2.1 AMBIT .. 27

4.2.2 Jaqpot .. 29

4.2.3 ToxCreate .. 29

5. Further work .. 30

5.1 Description of the extended use case .. 30

5.2 Implementation of the extended use case ... 30

6. Conclusions .. 32

Deliverable Report

 3

Table of figures

Figure 1: Protection of confidential information in the request-response chain................... 8

Figure 2: Protection of confidential data in a multi-service application................................ 9

Figure 3: Policy definition - A flexible way to assign privileges to individual users and

groups .. 10

Figure 4: A policy in XML format .. 10

Figure 5: Policy creation in model training ... 11

 Figure 6: Topological description of an OpenTox-compliant validation service (interactions

with other web services) ... 14

Figure 7: Login screen of ToxCreate ... 16

Figure 8: User interface provide by ToxCreate for uploading a training dataset 17

Figure 9: An overview of a QSAR model produced within the ToxCreate application 18

Figure 10: Protected resources do not allow unauthorized access - access has been denied

to a validation report .. 23

Figure 11: Successful access to the validation report ... 24

Figure 12: Eavesdropping of sensitive information... 25

 Figure 13: Topological structure of a virtual private network established over the Internet

or some Local Area Network ... 26

Figure 14: Screenshot from the deployment of AMBIT on a tomcat servlet container 28

Figure 15: Privileges proxy acts as a broker of a portion of confidential results 31

Figure 16: Firewalls enhance the protection of sensitive information from leakage 31

Deliverable Report

 4

Summary

In a framework like OpenTox where applications may involve confidential data, it is critical

to address successfully the issue of protecting sensitive information from being accessed

or copied by unauthorized users. With this functionality, OpenTox meets a key requirement

imposed by the REACH legislation, according to which registrants may ask for protection of

the security and confidentiality of the supplied information. OpenTox applications1 protect

confidential information from data leakage through identity and group-based policy

controls, whose foundations are the authorization and authentication policies that have

been developed and implemented in OpenTox services.

This report on “validation against confidential data” presents the work that has been

accomplished within the OpenTox project on protecting confidential data from

unauthorized access with emphasis on the validation services. The use case description

and its implementation, based on a rigorous authentication and authorization strategy, are

described. Examples on confidential datasets are presented, which illustrate not only the

efficiency of the approach but also the consistency of the validation services with open

standards, the adopted Restful web service architecture and the OpenTox ontology. An

alternative implementation is also presented which maximizes protection of confidential

data by providing a local standalone installation of the OpenTox services, not involving any

transmission of confidential data over the Internet. An extended use case is described

where the end user does not have access to confidential data but wishes to validate his

algorithm or model against confidential data sets.

1 For example see ToxCreate, http://toxcreate.org

http://toxcreate.org/

Deliverable Report

 5

1. Introduction

OpenTox validation service development aims to create a unified framework for evaluating

(Quantitative) Structure-Activity Relationship i.e., (Q)SAR models and algorithms, to

standardize the comparison routines, and to provide a robust and open platform for these

comparisons. An extensive number of tools have already been implemented towards the

accomplishment of these objectives2. For the integration of these validation and reporting

tools, a common collaboration framework based on the RESTful web service architecture3

has been utilized. For the successful deployment of OpenTox applications, it must be

taken into account that toxicity data are often considered highly sensitive and confidential

by their owners and unauthorized access to these data may expose them to risks.

Additionally, OpenTox is a framework that meets the requirements of the Registration,

Evaluation, Authorisation and Restriction of Chemicals (REACH) legislation4. Among them,

data protection is of particular importance, if confidentiality is requested by the

registrants. Towards this direction, mechanisms have been developed within OpenTox to

control access to confidential information, ensure the maximum level of protection and

minimize risks related to confidential data. This report describes the two approaches that

have already been implemented: a) the on-line approach where access control and data

protection is based on rigorous and strong authorization and authentication procedures,

which have been gradually embedded in all OpenTox services and b) the off-line stand-

alone approach which allows the user to download and locally install OpenTox services and

does not involve any transfer of data over the Internet.

2. Validation against confidential data using
authentication and authorization

Authentication5 and Authorization6 (abbreviated as A&A) form the core of network security

with Accounting being the third 'A' of the trilogy7. Authentication is the process of trusting

2 http://www.opentox.org/dev/documentation/components/componentsvalidation/

3 http://www.opentox.org/dev/apis/api-1.1/Validation

4 http://ec.europa.eu/enterprise/sectors/chemicals/reach/index_en.htm

5 http://en.wikipedia.org/wiki/Authentication

6 http://en.wikipedia.org/wiki/Authorization

7 http://en.wikipedia.org/wiki/AAA_protocol

http://www.opentox.org/dev/documentation/components/componentsvalidation/
http://www.opentox.org/dev/apis/api-1.1/Validation
http://ec.europa.eu/enterprise/sectors/chemicals/reach/index_en.htm
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Authorization
http://en.wikipedia.org/wiki/AAA_protocol

Deliverable Report

 6

a user's alleged identity by requiring certain evidence such as pairs of id and password or

attested digital certificates by some trusted authority. To put it simply, authentication is

about confirming that the users are those that they claim to be. Authorization is a process

that follows authentication and determines access privileges to the system including – but

not limited to – retrieval of information from databases and use of web services or other

functions of the system. So authorization determines whether a particular authenticated

individual has the right to perform a given action and thus frames users with certain

restrictions. Finally, Accounting refers to the tracking of actions of a particular

authenticated user, for example the access and use history of particular services and the

consumption of resources such as storage and computational usage.

2.1 REACH legislation and confidential data

As REACH comes into action, tens of thousands of data sheets regarding chemical

substances along with safety and exposure information are going to be registered in a

central database run by the European Chemicals Agency (EChA) in Helsinki8. The Agency

acts as the central point in the REACH system: it manages the databases necessary to

operate the system, co-ordinates the in-depth evaluation of suspicious chemicals and is

building up a public database in which consumers and professionals can find hazard

information.

According to REACH, the industries are assumed to shoulder the burden of managing the

risks of the human contact with chemical substances (in food, cosmetics, etc.) and report

to the EU accordingly. EChA publishes information it holds on registered substances free of

charge on the internet. However, in certain cases, information can be withheld, if the

registrant submitting the information also submits a justification as to why publishing the

information would be potentially harmful to the commercial interests of the registrant or

any other party concerned. EChA will not publish the information concerned, if justification

is accepted as valid9. Towards this direction, REACH-relevant software frameworks such as

OpenTox should take into account these confidentiality issues. In the light of these REACH

issues, a robust authentication and authorization design is rendered a requirement for the

OpenTox framework.

2.2 Authentication and authorization in OpenTox

Within OpenTox, the principles of network security are materialized by means of a central

access control system based on Single Sign-On (SSO). Accounting is currently delegated to

8 http://echa.europa.eu/

9 http://echa.europa.eu/doc/reachit/dsm_16_confidentiality_claims.pdf

http://echa.europa.eu/
http://echa.europa.eu/doc/reachit/dsm_16_confidentiality_claims.pdf

Deliverable Report

 7

service providers according to their processing and storage resources. It is fundamental for

a distributed system like OpenTox to provide a structured and robust access control

system that enables administrators and system providers to:

 Flexibly specify and modify access privileges to users and user groups

 Segregate public and private data

 Protect users' private information such as passwords

 Build web services decoupled from the A&A infrastructure (administrative access to

some database may not be necessary) or even provide completely public services

without A&A

For these reasons, SSO was chosen as the security mechanism in OpenTox. The principles

of SSO and how these bind with REST and OpenTox web services, was previously described

in detail in the OpenTox Report on Tools for Access to Confidential Information10. The

REST API for accessing the SSO infrastructure is described in the OpenTox API 1.2 at

http://www.opentox.org/dev/apis/api-1.2/AA

2.2.1 Topological description of access control

The realization of access control in OpenTox is currently based on a central SSO server

which is employed by individual web services to decide for a user‟s access to them or to

other services to which the former act as gateways or proxies. Figure 1 depicts the main

concept and how services interact with the single access control manager when a single

service is involved.

The client identifies itself providing an authentication token11 to the OpenTox web service

it wants to access. Tokens are generated by the SSO services upon request (over a secure

TLS-encrypted connection12, i.e. a connection using the Transport Layer Security protocol

as described by the RFC-524613 specifications) of the user's identifier and password (user

credentials) and have a certain lifetime. In the current implementation, tokens stay active

for 24 hours unless they are invalidated by the client. The web service receives this token,

10

http://www.opentox.org/data/documents/development/opentoxreports/opentoxreportd33/view?s

earchterm=D3.3

11 http://en.wikipedia.org/wiki/Security_token

12 Transport Layer Security on Wikipedia:

http://en.wikipedia.org/wiki/Transport_Layer_Security

13 http://tools.ietf.org/html/rfc5246

http://www.opentox.org/dev/apis/api-1.2/AA
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://tools.ietf.org/html/rfc5246
http://www.opentox.org/data/documents/development/opentoxreports/opentoxreportd33/view?searchterm=D3.3
http://www.opentox.org/data/documents/development/opentoxreports/opentoxreportd33/view?searchterm=D3.3
http://en.wikipedia.org/wiki/Security_token
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://tools.ietf.org/html/rfc5246

Deliverable Report

 8

and using the SSO service, checks whether the token is valid (corresponds to a logged in

user) and whether that user is granted the necessary privileges to perform the request. If

authentication or authorization fails, a status code 40114 is returned to the user along with

an error report15.

Figure 1: Protection of confidential information in the request-response chain

In case the initial client request induces a second request from the invoked service, this is

always done on behalf of the user using the provided token. This token is passed to the

next service(s) of the workflow and in case authorization fails somewhere in the middle, an

error report is generated and propagated backwards to the client with a status code 40116.

In the scheme described in Figure 2, service 1 passes to the remote service the token of

the user that initiated the request. In this way, it is guaranteed that an end user will not

access either directly or indirectly (through some other service) confidential data, unless he

is authorized to do so.

14 HTTP Status code 401 definition: http://www.w3.org/Protocols/rfc2616/rfc2616-

sec10.html#sec10.4.2

15 OpenTox specifications for Asynchronous Tasks and Error Reports:

http://opentox.org/dev/apis/api-1.2/AsyncTask

16 HTTP Status code 401 – Unauthorized: http://www.w3.org/Protocols/rfc2616/rfc2616-

sec10.html#sec10.4.2

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://opentox.org/dev/apis/api-1.2/AsyncTask
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://opentox.org/dev/apis/api-1.2/AsyncTask
http://opentox.org/dev/apis/api-1.2/AsyncTask
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2

Deliverable Report

 9

Figure 2: Protection of confidential data in a multi-service application

2.2.2 Managing access

Access to confidential data is secured by the SSO service. The way in which this service

allows or blocks an action on an OpenTox web service is specified by the policy for the

underlying resource. A policy over a resource (identified by its URI) defines to whom access

is granted (Figure 3). The authorization policies for the central SSO server are defined by

the creator of each resource. SSO policies specify restrictions on the REST level17 and with

respect to some HTTP method. These restrictions apply either on individual users or on

groups.

From a programmatic point of view, a policy here is implemented as an XML file specifying

explicitly to whom access is allowed and under which conditions. This way a policy defines

rules that specify who or what can access these protected resources. The rules are, in

effect, permissions describing when and how a user can perform an action on a given

protected resource. A user can be an individual or a group. In general, the permissions

define what a user can do to which resource and under what conditions.

For OpenTox, we provide a Policy Configuration Service (PCS) to define such preferences

and manage the policies. The service allows any registered user to define, modify, and

revoke permissions on specific resources (URIs). After creation, only the resource owner

(the user who created it) can alter the policy.

17 For a short explanation and reference to the REST commands, please see:

http://www.opentox.org/dev/framework/restweb

http://www.opentox.org/dev/framework/restweb

Deliverable Report

 10

Figure 3: Policy definition - A flexible way to assign privileges to individual users and groups

The policy for a new resource is created by the owner of the resource which is the

individual that generates it using some web service. For example when a user uploads a

new dataset to a dataset server (using POST) the PCS also creates a policy for it. The policy

is created indirectly as the service that accepts the client's request also creates the policy

for it. Finally, we provide an example policy XML which is POSTed to the SSO policy service

to define access rules for the hypothetical resource http://opentox.org/s2 in Figure 4.

Figure 4: A policy in XML format

<?xml version="1.0" encoding="UTF-8"?>

<Policies>

<Policy name="s2_policy" createdby="id=amadmin,ou=user,dc=opensso,dc=java,dc=net"

lastmodifiedby="id=amadmin,ou=user,dc=opensso,dc=java,dc=net"

creationdate="1275290803394"2">

 <Rule name="s2 rule lastmodifieddate="1275290803394"

 <ServiceName name="iPlanetAMWebAgentService"/>

 <ResourceName name="http://opentox.org/s2"/>

 <AttributeValuePair>

 <Attribute name="POST"/>

 <Value>allow</Value>

 </AttributeValuePair>

 <AttributeValuePair>

 <Attribute name="GET"/>

 <Value>allow</Value>

 </AttributeValuePair>

 </Rule>

 <Subjects name="s2 subject 2" description="">

 <Subject name="amaunz" type="LDAPUsers" includeType="inclusive">

 <AttributeValuePair>

 <Attribute name="Values"/>

 <Value>uid=amaunz,ou=people,dc=opentox,dc=org</Value>

 </AttributeValuePair>

 </Subject>

 </Subjects>

</Policy></Policies>

http://opentox.org/s2

Deliverable Report

 11

2.2.3 Policy Creation and management

When a client creates a resource, it should be able to specify a policy for it by passing

some parameters to the corresponding service. This can be done for simplicity using POST

parameters like "policy=public" or "allow_users_get=john,nick", "allow_users_post=nick" or

"allow_groups_get=development,partner" etc. The client should be able to specify a policy

by providing an XML document for it. To avoid passing the policy as a form parameter (in

MIME-type application/x-form-urlencoded) a Header parameter can be used instead:

In Figure 5 the way policies are created is presented for the use case of model creation.

The user that initiates the training will either provide a policy XML on the header of the

request or the policy definition is delegated to the trainer. The default policy for models

defines that only the creator is allowed to perform predictions and delete the model while

the RDF representation of the model is publicly available. Once the policy for the model is

created, only the creator is allowed to modify it and grant specific access to other users

and/or groups.

Figure 5: Policy creation in model training

2.2.4 Evaluation of the current access control system

The following evaluation not only provides an insight, from the web service developer

point of view, regarding the access control system of OpenTox but also justifies the raison

d'être for it. The adoption of SSO as an access control system for OpenTox offers the

following features:

Policy = "Policy: <XML for policy>"

Deliverable Report

 12

1. The web services are designed, implemented and deployed without the need for the

maintenance of a local users' database. No administrators or privileged users are

needed to deploy an OpenTox web service thus underlining the open nature of the

framework since everyone can design and deploy an OpenTox-based service.

Therefore, the web services are disengaged from the authentication and

authorization infrastructure (A&AI). Phishing18 opportunities are reduced to a

minimum since users provide their credentials only once for every session.

2. Reduces password fatigue19 as users are not required to remember as many pairs of

username and password as the OpenTox web services they need to access. It also

reduces the time that the user spends in entering passwords.

3. The client authenticates against the SSO service establishing an encrypted SSL/TLS

connection and using it to pass the pair of username and password. No credentials

are transferred over unencrypted connections and, more, these credentials are not

passed to the individual services. The SSO service verifies the received credentials

against the opentox.org's user database (LDAP20) which is not exposed to the

network whatsoever.

4. The creator of a resource is responsible for its availability (public, private, etc). The

data held by a web service and their flow to third party users or groups of such is

fully controlled by the creator.

What is considered to be a possible drawback of this design approach is that the SSO

server is the most critical node in the system. An outage of the SSO service will affect all

services that depend on it.

2.2.5 OECD Principles

Validation services, even when running against confidential data, should satisfy the 5

OECD principles for (Q)SAR validation. In particular, OpenTox validation web services

comply with OECD principles 3 and 4, even when confidential data are involved and A&A

services are activated:

PRINCIPLE 3: "DEFINED APPLICABILITY DOMAIN"

18 Definition of phishing: http://en.wikipedia.org/wiki/Phishing

19 Definition of password fatigue: http://encyclopedia.thefreedictionary.com/password+fatigue

20 Project page of openLDAP: http://www.openldap.org/

http://en.wikipedia.org/wiki/Phishing
http://encyclopedia.thefreedictionary.com/password+fatigue
http://www.openldap.org/

Deliverable Report

 13

OpenTox provides tools for the determination of applicability domains during the

validation of (Q)SAR models against confidential datasets.

PRINCIPLE 4: "APPROPRIATE MEASURES OF GOODNESS-OF-FIT, ROBUSTENESS AND

PREDICTIVITY"

OpenTox provides scientifically sound validation routines for the determination of these

measures.

2.3 Use Case description

The problem arises when different or seemingly conflicting access privileges are expected

to occur regarding models, datasets and other services. A client needs to validate a model

against confidential data to which he might have no access. Regarding user privileges, the

following alternative cases may occur:

 Access to the test dataset

Access to the

QSAR model

Yes/Yes Yes/No

No/Yes No/No

The most representative cases are the Y/Y and the N/N case (as the Y/N and N/Y cases are

actually sub-cases of the N/N case). In case that the user has access both to the test

dataset and the QSAR model (Y/Y), the framework has to take care of the access privileges

on any resources (datasets) created as predictions from the model so that confidential

information will not leak from the validation service. Current access control infrastructure

of OpenTox, combined with the REST architecture, caters for the protection of all these

resources. In the second case, where the user has not access either to the model or to the

test dataset, it becomes evident that a second user with enhanced privileges has to

intervene and perform the validation on behalf of the first user exposing back to him just

the validation report but no information regarding the test set and/or the model. For

validation purposes OpenTox could provide a facility to test (Q)SAR models remotely

against confidential datasets without getting access to the actual entries of the database to

ensure security and confidentiality of proprietary data. This use case is an extended

feature and is briefly described in Section 5 of this report.

2.3.1 Use Case implementation

Current OpenTox implementations support the case where the end user provides his own

dataset or has access to the confidential dataset. When confidential data are held by public

Deliverable Report

 14

servers and these are to be used in a validation session, it should be clear which new

resources that are created replicate some part of these data and under what kind of

policies these resources are created. Validation lies in between all other OpenTox services

and creates models and datasets on behalf of the end user. In Figure 6 the validation

procedure is described regarding the service invocations involved.

 Figure 6: Topological description of an OpenTox-compliant validation service (interactions with

other web services)

All service invocations mentioned above (validation request, model training, predictions)

are performed using the end user's authentication token. In case a new resource is to be

created, as for example in the case a model is trained or a dataset with predicted values is

created on a dataset service, a policy is defined by the corresponding service that creates

the resource (using again the user's token) and is POSTed to the policy service. All created

models and datasets with predictions “belong” to the user that initiated the validation and

only that user can amend their access options.

Deliverable Report

 15

3. Validation examples using confidential data

Two different examples are presented in this section. The first example shows the

seamless integration of the A&A concept into the OpenTox application ToxCreate. The user

does not have to worry about security issues while he benefits from the comfort of a

Graphical User Interface (GUI). The second example gives more technical insights: a remote

confidential dataset is validated using the command line tool cURL21. This example

emphasizes how confidentiality is guaranteed with locally distributed web services.

3.1 Validation against confidential data with ToxCreate

ToxCreate (www.toxcreate.org22) is a web-based application developed within the

OpenTox framework. It is based on various OpenTox web services and provides model

creation, validation and the prediction of compounds with the created models23. At this

stage, ToxCreate only supports Lazar as a prediction algorithm and model but this will be

extended in Spring 2011 to apply more generally for OpenTox algorithms. The user can

use already created models, or upload a new dataset to train a new model. This example

focuses on the latter use case: assuming that the data provided by the user is confidential,

no other user should be able to access the uploaded dataset or resources created on the

basis of this dataset, unless the creator provides an override to this default to specific

users.

In ToxCreate the user is automatically logged in as guest. The application is organized

with multiple tabs. The user can login at the „Login‟ tab. This demonstration is performed

with the test-user „alu_test‟ (password is „alu_test‟ as well).

21 URL is a command-line tool serving as an HTTP client. See http://curl.haxx.se/

22 The current production version of ToxCreate running at http://toxcreate.org will soon be

updated with a version that supports A&A as described in this section. The new development

version can be currently found at http://toxcreate3.in-silico.ch/toxcreate

23 For more info on ToxCreate see

http://opentox.net/dev/testing/testcasedevelopment/toxcreate

http://www.toxcreate.org/
http://curl.haxx.se/
http://toxcreate.org/
http://toxcreate3.in-silico.ch/toxcreate
http://opentox.net/dev/testing/testcasedevelopment/toxcreate

Deliverable Report

 16

Figure 7: Login screen of ToxCreate

After logging in (Figure 7), the current user switches from „guest‟ to „alu_test‟, as shown

on the top right of the web page. It is now possible to safely upload the confidential

dataset. For this example a publicly available dataset from the Carcinogenic Potency

Database (CPDB) was chosen: the hamster carcinogenicity dataset contains 85

compounds24. A binary target variable indicates whether the compound is active or

inactive. This dataset can be uploaded from your local hard drive at the „Create‟ tab of

ToxCreate (Figure 8).

24 Available at https://github.com/helma/opentox-

test/blob/master/data/hamster_carcinogenicity.csv

https://github.com/helma/opentox-test/blob/master/data/hamster_carcinogenicity.csv
https://github.com/helma/opentox-test/blob/master/data/hamster_carcinogenicity.csv

Deliverable Report

 17

Figure 8: User interface provide by ToxCreate for uploading a training dataset

When the „Create model‟ button is pressed, ToxCreate automatically switches to the

„Inspect‟ tab. In the background the dataset is uploaded and a model building and

validation process is initialized:

 The dataset is uploaded to the dataset web service, and registered at the A&A server

to allow access to user „alu_test‟ (and the group of this user) only.

 Structural features are mined on this dataset and a lazar model is built. This model

can be used later on to make predictions („Predict‟ tab).

 A 10-fold cross-validation to evaluate the predictive power of this model on the

dataset is performed. This splits the datasets into 10 folds, and repeatedly builds a

model on 9 different folds of the 10 dataset folds. The resulting model is used to

predict the test dataset (the fold that was left out when building the model). The

final results of this cross-validation are shown in the validation section of the

models properties. More details are available in the validation report.

 Finally a QMRF report is automatically created for this model. It contains meta-

information on the trained model and the algorithm, the validation results, and

other information about the model.

The results of these steps are gradually added to the new „Hamster Carcinogenicity‟ model

that is available on the „Inspect‟ tab, until the status is finally set to completed (Figure 9).

Deliverable Report

 18

Figure 9: An overview of a QSAR model produced within the ToxCreate application

The user can now have a look at the detailed validation report, edit the QMRF report with

the QMRF editor, or make predictions with the newly created model.

Note that the resources (dataset, model, validation report, etc…) are only available to user

„alu_test‟. After logging out, the user „guest‟ has no access to the newly created Model

„Hamster Carcinogenicity‟; it is not available in the „Inspect‟ tab of ToxCreate.

Deliverable Report

 19

3.2 Validation against validation data using distributed web services

This example demonstrates how a dataset is protected by A&A and SSL when used for

validation. The use case is a training-test-split validation. This is an established method to

estimate the performance of a prediction model on unseen data25: the original dataset is

split into a training data set and a test data set. The training data set is used to build a

model. The model is then applied to make predictions on the unseen test dataset.

In the use case presented here, we use the well-known Caco-2 dataset26. The dataset

consists of 100 organic molecules with a numeric endpoint (Caco-2 permeability, logPapp).

The dataset was uploaded to the AMBIT2 dataset service (It is available with A&A at

https://ambit.uni-plovdiv.bg:8443/ambit2/dataset/R401560). 27 numerical features have

been calculated using AMBITs descriptor calculation services27. A linear regression

algorithm (https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/LR) was selected to

predict the target variable. Both, the dataset as well the algorithm service are located in

Sofia, Bulgaria. The validation server is located at the University of Freiburg, Germany.

We are executing this example with the command line tool curl (http://curl.haxx.se/),

using the functionality specified in the OpenTox API28. Alternatively, the REST calls could

be performed with any programming language that includes a REST library. To this end,

the validation routines can be integrated into an application with a GUI (like in the

ToxCreate example above).

Login:

The first step is to derive a subject-id from the SSO-server, for the user ‟guest‟: 29

25 More extensive techniques like cross-validation should be preferred especially if the

training dataset is small. The simpler training test split method is chosen for proof of concept.

26 http://pubs.acs.org/doi/suppl/10.1021/ci049884m

27 See for example: https://ambit.uni-

plovdiv.bg:8443/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.AtomCountDes

criptor

28 Documentation for the OpenTox API http://opentox.org/dev/apis/api-1.2

29 The cURL calls (presented in purple boxes) can be copied to and executed with a command-

line interface. The return value is marked in green (success) or orange (error) boxes.

https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/LR
http://curl.haxx.se/
http://pubs.acs.org/doi/suppl/10.1021/ci049884m
https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.AtomCountDescriptor
https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.AtomCountDescriptor
https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.AtomCountDescriptor
http://opentox.org/dev/apis/api-1.2

Deliverable Report

 20

The curl call returns the following:

This string can now be used to identify the client as user ‟guest‟ in the subsequent cURL

calls. The access to all resources that are created with this subject-id will only be granted

to user „guest‟ (and the group of this user).

Start validation:

The validation is initialized with a HTTP POST call to http://opentox.informatik.uni-

freiburg.de/validation/training_test_split. The parameters to control the routine are

algorithm-URI, dataset-URI and prediction-feature. The subject-id is specified as

additional header (with –H option):

The validation service returns the URI of a task object, while running the validation as an

asynchronous background job. The result is stored in the task object when the job is

finished.

Get validation result-URI:

Task resources are not protected, which is why the following cURL call does not need to

include the subject-id:

curl -X POST -d "username=guest" -d "password=guest" http://opensso.in-

silico.ch/opensso/identity/authenticate?uri=service=openldap

curl -X POST -d algorithm_uri="https://ambit.uni-

plovdiv.bg:8443/ambit2/algorithm/LR" -d dataset_uri="https://ambit.uni-

plovdiv.bg:8443/ambit2/dataset/R401560" -d

prediction_feature="https://ambit.uni-plovdiv.bg:8443/ambit2/feature/22190"

http://opentox.informatik.uni-freiburg.de/validation/training_test_split -H
"subjectid:AQIC5wM2LY4SfczngIclWu3ztAWK7WKXHfAFK+CI8Rvf5zU=@AAJTSQACMDE=#"

http://opentox.informatik.uni-freiburg.de/task/1004

token.id= AQIC5wM2LY4SfczngIclWu3ztAWK7WKXHfAFK+CI8Rvf5zU=@AAJTSQACMDE=#

curl http://opentox.informatik.uni-freiburg.de/task/1004 -H
"Accept:application/x-yaml"

http://opentox.informatik.uni-freiburg.de/validation/training_test_split
http://opentox.informatik.uni-freiburg.de/validation/training_test_split
http://opensso.in-silico.ch/opensso/identity/authenticate?uri=service=openldap
http://opensso.in-silico.ch/opensso/identity/authenticate?uri=service=openldap
https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/LR
https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/LR
https://ambit.uni-plovdiv.bg:8443/ambit2/dataset/R401560
https://ambit.uni-plovdiv.bg:8443/ambit2/dataset/R401560
https://ambit.uni-plovdiv.bg:8443/ambit2/feature/22190
http://opentox.informatik.uni-freiburg.de/validation/training_test_split%20
http://opentox.informatik.uni-freiburg.de/task/1004
http://opentox.informatik.uni-freiburg.de/task/1004

Deliverable Report

 21

Using cURL on the task-URI returns a list of its properties, including the field result-URI

that contains the validation-URI.

Get validation result:

The following cURL call demonstrates that the validation result

http://opentox.informatik.uni-freiburg.de/validation/114 is protected by the A&A

routines:

Access is denied, and an error report is returned instead. However, we can access this

resource when specifying the subject-id:

curl http://opentox.informatik.uni-freiburg.de/validation/114 -H
"subjectid:AQIC5wM2LY4SfczngIclWu3ztAWK7WKXHfAFK+CI8Rvf5zU=@AAJTSQACMDE=#"

--- !ruby/object:OpenTox::ErrorReport

actor: http://opentox.informatik.uni-freiburg.de/validation/114
errorType: OpenTox::NotAuthorizedError

http_code: 401

message: Not authorized

[…]

curl http://opentox.informatik.uni-freiburg.de/validation/114

http://purl.org/dc/elements/1.1/title: Perform training test split validation

http://www.opentox.org/api/1.1#hasStatus: Completed

http://www.opentox.org/api/1.1#resultURI: http://opentox.informatik.uni-

freiburg.de/validation/114
http://www.opentox.org/api/1.1#percentageCompleted: 100.0

[…]

http://opentox.informatik.uni-freiburg.de/validation/114
http://opentox.informatik.uni-freiburg.de/validation/114
http://opentox.informatik.uni-freiburg.de/validation/114
http://opentox.informatik.uni-freiburg.de/validation/114
http://opentox.informatik.uni-freiburg.de/validation/114
http://opentox.informatik.uni-freiburg.de/validation/114

Deliverable Report

 22

The validation object links to resources that have been used for validation, e.g., training

and test data sets. The latter have been created by splitting the original dataset, and are

located at Freiburg‟s dataset service.

Create report:

We finally create a validation report from the validation resource:

Again this call returns a task object first (skipped for simplicity). Accessing this task

reveals the report-URI:

http://www.opentox.org/api/1.1#resultURI: http://opentox.informatik.uni-

freiburg.de/validation/report/validation/14
[...]

curl -X POST -d validation_uris="http://opentox.informatik.uni-

freiburg.de/validation/114" http://opentox.informatik.uni-

freiburg.de/validation/report/validation -H
"subjectid:AQIC5wM2LY4SfczngIclWu3ztAWK7WKXHfAFK+CI8Rvf5zU=@AAJTSQACMDE=#"

http://www.opentox.org/api/1.1#model: https://ambit.uni-

plovdiv.bg:8443/ambit2/model/35009

http://www.opentox.org/api/1.1#trainingDataset: http://opentox.informatik.uni-

freiburg.de/dataset/452

http://www.opentox.org/api/1.1#predictionDataset: http://opentox.informatik.uni-

freiburg.de/dataset/454

http://www.opentox.org/api/1.1#predictionFeature: https://ambit.uni-

plovdiv.bg:8443/ambit2/feature/22190
http://www.opentox.org/api/1.1#numInstances: 32

http://www.opentox.org/api/1.1#testTargetDataset: https://ambit.uni-

plovdiv.bg:8443/ambit2/dataset/R401560
http://www.opentox.org/api/1.1#validationType: training_test_split

http://www.opentox.org/api/1.1#testDataset: http://opentox.informatik.uni-

freiburg.de/dataset/453

http://www.opentox.org/api/1.1#algorithm: https://ambit.uni-

plovdiv.bg:8443/ambit2/algorithm/LR
http://www.opentox.org/api/1.1#regressionStatistics:

 http://www.opentox.org/api/1.1#rootMeanSquaredError: 0.627121310539419

 http://www.opentox.org/api/1.1#rSquare: 0.352408295243186

[…]

http://opentox.informatik.uni-freiburg.de/validation/report/validation/14
http://opentox.informatik.uni-freiburg.de/validation/report/validation/14
http://opentox.informatik.uni-freiburg.de/validation/114
http://opentox.informatik.uni-freiburg.de/validation/114
http://opentox.informatik.uni-freiburg.de/validation/report/validation
http://opentox.informatik.uni-freiburg.de/validation/report/validation
https://ambit.uni-plovdiv.bg:8443/ambit2/model/35009
https://ambit.uni-plovdiv.bg:8443/ambit2/model/35009
http://opentox.informatik.uni-freiburg.de/dataset/452
http://opentox.informatik.uni-freiburg.de/dataset/452
http://opentox.informatik.uni-freiburg.de/dataset/454
http://opentox.informatik.uni-freiburg.de/dataset/454
https://ambit.uni-plovdiv.bg:8443/ambit2/feature/22190
https://ambit.uni-plovdiv.bg:8443/ambit2/feature/22190
https://ambit.uni-plovdiv.bg:8443/ambit2/dataset/R401560
https://ambit.uni-plovdiv.bg:8443/ambit2/dataset/R401560
http://opentox.informatik.uni-freiburg.de/dataset/453
http://opentox.informatik.uni-freiburg.de/dataset/453
https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/LR
https://ambit.uni-plovdiv.bg:8443/ambit2/algorithm/LR

Deliverable Report

 23

Visit validation report with browser:

The validation report could be requested with cURL as well, but is best viewed with a web

browser. As it is protected by A&A, access is denied for http://opentox.informatik.uni-

freiburg.de/validation/report/validation/14 (Figure 10).

Figure 10: Protected resources do not allow unauthorized access - access has been denied to a

validation report

The user has to login as guest30 (using the link at the top right of the browser, password is

„guest‟). This stores the subject-id in a cookie that will identify the user to the validation

web service with the web browser. Hence, the second attempt to visit

http://opentox.informatik.uni-freiburg.de/validation/report/validation/14 is successful.

The user is provided with the validation report (Figure 11).

30 Login screen for validation service: http://opentox.informatik.uni-freiburg.de/validation/login

http://opentox.informatik.uni-freiburg.de/validation/report/validation/14
http://opentox.informatik.uni-freiburg.de/validation/report/validation/14
http://opentox.informatik.uni-freiburg.de/validation/report/validation/14
http://opentox.informatik.uni-freiburg.de/validation/login

Deliverable Report

 24

Figure 11: Successful access to the validation report

Deliverable Report

 25

4. Validation against confidential data using
standalone version

4.1 Standalone Installation of OpenTox Web Services

 A distributed system over the Internet has conveniency and extensibility advantages

due to its high flexibility and easy integration of new services. However, its security is

questioned by certain users, because even when encrypted, data are still transferred over

the Internet and it might be possible for someone to eavesdrop the communication and

steal sensitive information (Figure 12). The authorization and authentication strategy

adopted in OpenTox and the overall security system provide a high level of protection of

confidential data. We understand, however, that toxicity data can be considered highly

confidential and sensitive by their owners and even a slight possibility of leakage might be

an obstacle for potential end users of OpenTox services and applications.

Figure 12: Eavesdropping of sensitive information

In order to minimize as much as possible the risk of data leakage, OpenTox offers an

alternative implementation of the use case, which is based on a stand-alone local

installation of some or all the OpenTox services. The alternative approach is considered as

the most secure way to seal data, namely to protect them physically prohibiting any kind of

interaction with others and restraining their mobility within an isolated system. Complete

physical isolation of the system means that the application runs on a machine either

disconnected from the Internet (or any other network) or protected by means of firewalls. A

virtual private network can also be established (Figure 13), again isolating the nodes of the

distributed application from the rest of the network and also protecting the client-server

communication using secure cryptographic tunnelling protocols.

Deliverable Report

 26

 Figure 13: Topological structure of a virtual private network established over the Internet or some

Local Area Network

The local installation of OpenTox web services along with web interfaces that facilitate

their consumption is feasible since all projects under OpenTox are freely distributed

(executables, documentation and source code) and are available on-line from the

www.opentox.org website31. All service providers offer the ability to download and install

individual web service implementations locally either as standalone applications or in a

Servlet container (such as Apache Tomcat32). In the case of a servlet container, the web

service implementations come as “web archive” files (.war).

In all cases documentation is provided regarding the installation of prerequisites such as

the MySQL database server or a J2EE-compatible servlet container such as Apache Tomcat.

4.2 Standalone Installation of particular services

This section describes how a user can install locally three OpenTox services namely AMBIT,

Jaqpot, and ToxCreate. The AMBIT web service package is one of the several existing

independent implementations of the OpenTox Application Programming Interface and is

built according to the principles of the Representational State Transfer (REST) architecture.

The Open Source Predictive Toxicology Framework, developed by partners of the EC FP7

OpenTox project, aims at providing a unified access to toxicity data and predictive models,

as well as validation procedures. This is achieved by i) an information model, based on a

common OWL−DL ontology; ii) links to related ontologies; iii) data and algorithms,

available through a standardized REST web services interface, where every compound, data

set or predictive method has a unique web address, used to retrieve its Resource

31 OpenTox downloads: http://www.opentox.org/downloads

32 Apache Tomcat home page: http://tomcat.apache.org/index.html

http://www.opentox.org/
http://www.opentox.org/downloads
http://tomcat.apache.org/index.html

Deliverable Report

 27

Description Framework (RDF) representation, or initiate the associated calculations.

The Jaqpot web services are OpenTox API 1.2-compliant web services. Jaqpot is a web

application that supports model training and data preprocessing algorithms such as

multiple linear regression, support vector machines, neural networks (an in-house

implementation based on an efficient algorithm), an implementation of the leverage

algorithm for domain of applicability estimation and various data preprocessing algorithms

such as PLS and data cleanup. Jaqpot also comes with a web service for storing BibTex33

entries which become also available in JSON and RDF formats. Jaqpot provides

asynchronous execution of tasks submitted by users, authentication, authorization and

accounting mechanisms powered by OpenSSO and two monitoring access points mounted

at /monitoring and /status.

ToxCreate is a QSAR web application that has been developed in OpenTox. It derives

nearest neighbours of the query structure and uses those to learn a model. Currently, it is

being extended to accommodate any OpenTox-compliant model and dataset service.

4.2.1 AMBIT

The user downloads the AMBIT 2.0 application

(http://www.ideaconsult.net/downloads/ambit2/ambit2.war) and saves the file

ambit2.war. With his web browser, he navigates to http://localhost:8080, and clicks on

“Tomcat Manager” in the Administration box at the top-left of the screen. He is prompted

to enter the user name and password of the Tomcat manager/administrator he has set up.

On the manager page, he scrolls to the bottom and finds the box entitled “WAR file to

deploy”34.

33 BibTeX specifications online: http://www.bibtex.org/

34 More documentation regarding deployment on a Tomcat servlet container can be found

online at http://tomcat.apache.org/tomcat-6.0-doc/deployer-howto.html

http://www.ideaconsult.net/downloads/ambit2/ambit2.war
http://localhost:8080/
http://www.bibtex.org/
http://tomcat.apache.org/tomcat-6.0-doc/deployer-howto.html

Deliverable Report

 28

Figure 14: Screenshot from the deployment of AMBIT on a tomcat servlet container

Under “WAR file to deploy”, he clicks “Browse...”, finds ambit2.war and clicks “Deploy”.

Following these steps, he has successfully installed the AMBIT 2.0 implementation of the

OpenTox REST API. If he next navigates to http://localhost:8080/abmit2 he should see the

welcome screen of AMBIT2. As explained in the installation instructions for AMBIT 2.0

(ambit.sourceforge.net), this release (September 2010) comes without an embedded

database (Figure 14).

An empty database can be created using cURL (curl.haxx.se). On many linux systems, cURL

can be easily installed from a package repository using a standard package manager. It can

also be downloaded from http://curl.haxx.se/download.html. Under Windows, there are

two options for using cURL: 1) installing cURL natively, preferably using the most recent

generic Win32 version: http://curl.haxx.se/download.html, or 2) installing the VMWare

Player (see online http://www.vmware.com/products/player/) and running a small Linux

environment (http://www.maunz.de/opentox/dsl-4.1.zip) under Windows (after installing

VMWare Player and unpacking the dsl-4.1.zip file, just double-click the dsl-4.1.vmx file).

Under Linux, after installing cURL, the following command can be typed as root in a

console:

$ curl -X POST -d "dbname=ambit2" -d "user=mysqladminuser" -d

"pass=mysqladminpass" http://localhost:8080/ambit2/admin/database

http://localhost:8080/abmit2
http://ambit.sourceforge.net/
http://curl.haxx.se/
http://curl.haxx.se/download.html
http://www.vmware.com/products/player/
http://www.maunz.de/opentox/dsl-4.1.zip
http://localhost:8080/ambit2/admin/database

Deliverable Report

 29

4.2.2 Jaqpot

A user can download and install Jaqpot on their local machine following these instructions

(Tested on Ubuntu, Debian and Mac OS X operating systems). First, he needs to install in

his system the following:

1. MySQL database server and client

2. Maven2

3. Git

The dependencies #2 and #3 are optional but will facilitate a lot the installation of Jaqpot.

The commands needed for downloading the latest version of Jaqpot are the following:

and Jaqpot will start on port 8080 (see http://localhost:8080/jaqpot).

4.2.3 ToxCreate

ToxCreate is distributed as a ready-to-use virtual machine (appliance). This offers several

advantages over traditional installers:

- The appliance is deployed anywhere in minutes, not even administrative privileges

are needed on a Windows machine35.

- The appliance can be deployed as is in virtual servers or cloud-based services. By

extracting the filesystem from the virtual hard disk, the Linux operating system is

also installed quickly on a physical machine.

A local installation of ToxCreate is a fully functional QSAR solution and offers complete

privacy. Installation instructions and downloads can be found on:

https://github.com/helma/opentox-documentation/wiki/Installation-of-IST-OpenTox-

webservices

35 See VirtualBox portable version, http://www.vbox.me

$git clone git://github.com/alphaville/jaqpot.git

$cd jaqpot/

$mvn clean package tomcat:run

http://localhost:8080/jaqpot
https://github.com/helma/opentox-documentation/wiki/Installation-of-IST-OpenTox-webservices
https://github.com/helma/opentox-documentation/wiki/Installation-of-IST-OpenTox-webservices
http://www.vbox.me/
../../../../Users/Haralambos/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/31V4ULMX/Macintosh%20HD:/git/--github.com-alphaville-jaqpot.git

Deliverable Report

 30

5. Further work

5.1 Description of the extended use case

The extended use case of “validation against confidential data” aims at the creation of

validation reports for datasets that are not accessible by any means to a user. No

prediction data or parts of the initial dataset should be exposed to the user and any

intermediate resources related to the test data should be protected in such a way that the

end user is denied access. A validation report for the model is created along with a proper

policy that allows the end user to access it. Whether the confidential data should be

available for validation is to be decided by the data owner. If yes, then a trusted proxy

service is endowed with (GET) privileges on these data, i.e. is given privileged credentials.

The proxy retains a database relating confidential dataset URIs with credentials to access

them. End users submit tasks to that service to perform a validation for a dataset to which

they don't have access.

5.2 Implementation of the extended use case

The extended use case can be implemented using a proxy service which acts as a broker.

Having enhanced privileges compared to the end user, this broker service can perform all

necessary actions on behalf of the user and return back only what is allowed. The

privileged credentials are handed to the webmasters of the proxy service once they have

presented their privacy policy to the data owner and upon common agreement. The proxy

service providers assure that the data will not leak and also provide a transparent

framework since the source code of the service is publicly available.

The proposed structure is presented in Figure 15. Being generic enough, it can be used to

tackle similar problems where the user needs to access part of the results, that only a

more privileged user can access or acquire. The end user provides its token T1 to the

proxy service along with a validation request. The client is not actually aware whether it

refers to an actual validation service or to a proxy since the request is identical with the

difference that the actual service is protected behind the proxy. The proxy service acquires

a privileged token T2 that corresponds to the test dataset URI that the user has provided. If

the proxy service does not have any stored credentials for the test dataset, then it tries to

use the token T1 (i.e. in that case T2 = T1 which will be successful only in the case that the

end user has access to the test dataset and the model). The proxy service has the option to

deny access to the end user specifying some SSO policy for its URI while the validation

service may have a different policy itself. This way it is possible to control which users can

use the proxy service and/or the validation service directly. Furthermore service providers

might consider hiding completely the actual validation service behind a firewall for

additional security thus allowing it to be accessible only via the proxy.

Deliverable Report

 31

Figure 15: Privileges proxy acts as a broker of a portion of confidential results

Figure 16 shows that it is possible that the end user is denied access to the proxy service

and in the presence of a firewall no validation is possible and the validation service is

utterly protected from unwanted requests (even though it might not make much sense in

denying access to a user to the validation service).

Figure 16: Firewalls enhance the protection of sensitive information from leakage

Deliverable Report

 32

Finally one more alternative is that the validation service can address the proxy in case it

receives a 401 from the test dataset resource acting on behalf of the user (T1). This

scheme has its advantages as it can control the validation of data on two independent

layers. Users address the actual validation service in all cases, which takes on the task of

accessing the trusted proxy service only if a 401 is received while processing the request

on behalf of T1. In case of an initial 401, the validation service attempts to find an

authentication token T2 and retry the request. In this case proxy service providers can

consider hiding the proxy service behind a firewall.

6. Conclusions

This report summarizes the work that has been accomplished within the OpenTox

Framework on the protection of confidential data and in particular on providing validation

services against confidential data. Based on a description of the relevant use case, but also

on technical details about the implementation strategy and several examples on particular

datasets, the report illustrates that maximum protection has been accomplished using the

OpenTox authorization and authentication services. This capability should have value in

the context of the increasing acceptance of cloud computing approaches by industry. A top

priority requirement by some end users for further reducing data leakage risk was a

driving force for developing stand-alone versions of OpenTox applications. A challenging

task for future implementations is to give end users the chance to test their models and

algorithms against confidential data without having direct or indirect access to the actual

endpoint values.

