

Deliverable D 4.2

Report on Initial

Prototype of (Q)SAR

Algorithms

Grant Agreement Health-F5-2008-200787

Acronym OpenTox

Name An Open Source Predictive Toxicology Framework

Coordinator Douglas Connect

Deliverable Report

 2

Contract No. Health-F5-2008-200787

Document Type: Deliverable Report

WP/Task: WP4

Name Report on Initial Prototype of (Q)SAR Algorithms

Document ID: OpenTox Deliverable Report WP4

Date: March 8, 2010

Status: Final Version

Organisation: National Technical University of Athens (NTUA)

Contributors

Haralambos Sarimveis

Pantelis Sopasakis

Stefan Kramer

Tobias Girschick

Fabian Buchwald

Nina Jeliazkova

Christoph Helma

David Vorgrimmler

Barry Hardy

Nicki Douglas

Alexey Zakharov

Sunil Chawla

Surajit Ray

NTUA

NTUA

TUM

TUM

TUM

IDEA

IST

IST

DC

DC

IBMC

SL-JNU

SL-JNU

Distribution: Public

Purpose of Document: To document results for this deliverable

Document History: 1 – Initial draft prepared on Feb 2, 2010

 2 – Second draft prepared on Feb 16, 2010

 3 – Third draft prepared on Feb 21, 2010

Deliverable Report

 3

 4 – Fourth draft prepared on Feb 22, 2010

5 – Fifth draft prepared on Feb 24, 2010

 6 – Sixth draft prepared on Feb 25, 2010

 7 – Seventh draft prepared on Feb 26, 2010

 8 – Final Version approved, Feb 28 2010

 9 – Updated Version, March 8 2010

Deliverable Report

 4

Table of Contents

Summary .. 6

1. Introduction ... 7

2. Implementation principles .. 7

2.1 Open Source programming tools ... 8

2.2 Restful Web Service architecture .. 8

2.3 OpenTox algorithm ontology... 9

2.4 OpenTox algorithm and model Application Programming Interfaces (APIs) 9

3. Progress achieved to date and future challenges ... 11

3.1 Independent development of components .. 11

3.2 Interoperability .. 11

3.3 Extensibility ... 12

3.4 User requirements and use cases .. 12

4. Algorithm prototype presentation .. 12

4.1 General Information about the service ... 13

4.2 Request/Response information ... 13

4.3 Status codes .. 14

4.4 Implementation Information .. 14

4.5 Examples ... 14

5. Prototype documentation ... 15

5.1 Descriptor calculation algorithms .. 15

5.1.1 FreeTreeMiner (TUM) ... 15

5.1.2 FMiner (IST) ... 17

5.1.3 gSpan’ (TUM) ... 19

5.1.4 JOELIB2 .. 22

5.1.5 The Chemistry Development Kit (CDK) .. 26

5.1.6 MakeMNA/MakeQNA ... 31

5.2 Classification and regression algorithms ... 33

5.2.1 Gaussian processes for regression .. 33

5.2.2 MLR ... 36

5.2.3 SVM ... 38

5.2.3.1 SVM regression .. 38

5.2.3.2 SVM classification .. 41

Deliverable Report

 5

5.2.4 KNN ... 44

5.2.5 Lazar (IST).. 47

5.2.6 J48 ... 49

5.2.7 M5P ... 52

5.2.8 Naive Bayes ... 55

5.2.9 ToxTree (IDEA) .. 57

5.2.10 PLS ... 61

5.2.11 MaxTox (SL with JNU)... 63

5.3 Clustering algorithms .. 66

5.3.1 K-means clustering ... 66

5.4 Feature selection algorithms ... 69

5.4.1 Information Gain Attribute Evaluation.. 69

6. Conclusions .. 72

7. Appendix. Algorithm Type Ontology ... 73

Deliverable Report

 6

Summary

Quantitative structure-activity relationship (QSAR) algorithms are used in predictive toxicology to develop

models that correlate structural, chemical and biological properties of chemical compounds with toxicological

endpoints. QSAR algorithms have advanced in recent years from simple linear regression methods to

sophisticated methodologies developed by researchers in the scientific areas of statistics, computer science

(machine learning and computational intelligence), cheminformatics and bioinfomatics. The development of

supporting algorithms (algorithms for calculating structural properties, selecting subsets of descriptors,

estimating the applicability domain and measuring chemical similarities) and consensus modelling approaches

have further improved the acceptance and reliability of QSAR analysis. Development of QSAR algorithms is an

active research area and recent advances have extended applications into other scientific disciplines, including

chemical biology, QSAR-directed virtual screening and systems biology.

The overall objective of the OpenTox Algorithms Work Package is to define and implement the integration of

state-of-the-art QSAR and supporting algorithms into the OpenTox Framework. The Framework was designed

aligned with the key OpenTox principles of interoperability, extensibility and compliance with user

requirements and use cases. Special care was taken to allow independent development of different algorithm

software components, which will enable the integration of additional new algorithms in the future that may be

offered not only by OpenTox partners but also by many third-party developers in the community. The

Framework works independently of the underlying data and thus, although emphasis is given to the prediction

of the REACH relevant end-points (e.g., chronic and reproductive toxicity, in vivo mutagenicity and

carcinogenicity), it can easily be extended to predict additional endpoints, such as ecotoxicity.

This report on the initial prototype of (Q)SAR Algorithms presents the work that has been accomplished within

the OpenTox project on the implementation of QSAR and supporting algorithms during the first 18 months of

the project. Prototype development has followed the RestFul Web Service architecture so that services comply

with the current version of the OpenTox standardized interfaces and algorithm ontology. The services include

cheminformatics, statistical and data mining tools that have been provided by OpenTox partners as well as

popular and well-accepted algorithms contained in other state-of-the-art open source projects (e.g. WEKA,

CDK). To be consistent with the open source philosophy of the OpenTox FP7 research project, open source

tools have been utilized for developing the initial algorithm prototypes and all source code is available to the

public. Due to the use of standardized interfaces, commercial software modules may additionally be

incorporated in applications based on the platform as component web services.

This report provides a comprehensive and detailed documentation of all the algorithms that have already been

implemented within OpenTox, thus serving as a valuable knowledge source for predictive toxicology

application development and deployment.

Deliverable Report

 7

1. Introduction

Ongoing scientific efforts in various complementary fields have led to a large number of algorithms that are

available and potentially useful for (Q)SAR and related tasks. During the first six months of the OpenTox

project, a comprehensive review of available algorithms was performed by project partners. The review

considered algorithms that have been developed and can be provided by project participants. The algorithms

were grouped into four categories: descriptor calculation algorithms, classification and regression algorithms,

feature selection algorithms and algorithms for the aggregation of results from multiple QSAR models. The

deliverable report D4.1 on Algorithm Selection and Evaluation, submitted on February 28, 2009, gave a

detailed description of these algorithms and, based on a set of multiple selection criteria, made a prioritization

of the algorithms which indicated in which stage of the OpenTox project each algorithm is planned to be

integrated into the OpenTox Framework. Algorithms with priority A were planned to be implemented in the

first (Q)SAR prototype. As it will be shown in the report, this task has been successfully accomplished (Open

Babel is the only set of priority A descriptor calculation algorithms that has not been prototyped yet as an

individual software component, but it is implicitly used in the fminer descriptor calculation implementation for

substructure matching). Additionally, a significant number of algorithms with lower priorities have also been

prototyped.

The OpenTox project involves many partners and developers having different programming backgrounds and

experience. A common collaboration framework based on the RestFul Web Service architecture was defined for

algorithm implementation that supports independent deployment of services by different partners, which may

be combined in an interoperable manner into OpenTox-based applications. This framework makes it

convenient for third-party (Q)SAR and machine learning researchers and developers to integrate their own tools

within the OpenTox Framework through well-established HTTP methods. The implementations are arranged in

a way that requests are forwarded from one server to the other, minimizing latency time and boosting

performance. Additionally, all communications are stateless in the sense that none of the nodes needs to store

any data; requests are self-contained and provide all the data needed by the application to process them.

Algorithm prototypes are presented in a uniform tabular format, which gives brief algorithm descriptions,

defines responsible partners and contact persons and provides links to the resources and the OpenTox

Application Programming Interface (API). More technical information (such as input parameters and output

results, status codes, programming languages, external libraries) is also included in each algorithm prototype

description. Algorithm prototype descriptions are completed with examples that can be used to test and

evaluate efficiency of the implementations.

2. Implementation principles

Algorithm prototypes constitute a major component of the overall OpenTox prototype and should be in line

with the key OpenTox design principles of interoperability, extensibility and compliance with user

requirements and use cases. Special care was taken to allow independent development of different algorithm

software components. The OpenTox algorithm implementation principles are presented next:

Deliverable Report

 8

2.1 Open Source programming tools

In order to be consistent with the open source philosophy aspect of the project, initial algorithm

implementation was realized using open source programming tools. Java1 was the main programming language

used by most partners, but other languages such as Ruby2 were utilized as well. The implementation process

also involved the utilization of widely-used and well-accepted open source machine learning and data mining

libraries, such as Weka3. This collection of tools permits full exploitation of opportunities coming from open

source software. Future developments of the OpenTox Framework as an industry platform will also address

support of the combination of non-open source and open source algorithm and modelling components and

services into OpenTox-based applications, compliant with OpenTox APIs, interoperability standards and

guidance.

2.2 Restful Web Service architecture

A Web service architecture was chosen for developing the algorithm prototype. Web services are rapidly

emerging as a popular standard for sharing data and functionality among loosely-coupled, heterogeneous

systems. In particular the Representational State Transfer (REST) Web service architecture4 was chosen because

of the following advantages:

1. The produced web services are stateless;

2. The produced web services have a uniform interface (the only allowed operations are the HTTP

operations);

3. The resources are uniquely identified by URIs and described by representations;

4. Components manipulate resources by exchanging representations of the resources.

All algorithm resources have representations providing information about the type of algorithm, what the

algorithm accepts as input, the tuning parameters etc. Most algorithms and model resources in OpenTox are

available in multiple representations. The Resource Description Framework (RDF) representation5,

and in particular its XML­formatted variant, was chosen as the master data exchange format, due to the

following reasons:

1. RDF is a W3C recommendation: RDF-related representations such as rdf/xml and rdf/turtle are w3c

recommendations so they constitute a standard model for data exchange.

2. RDF is part of Semantic Web Policy: RDF as a representation for a self-contained description of web

resources contributes to the evolution of the Semantic Web; a web where all machines can

“understand” each other.

3. RDF is designed to be machine-readable: while humans can, in principle, read RDF documents, it is

unlikely that they are able to understand them easily. RDF is intended to be understood by computers,

not people.

1 java.net/

2 www.ruby-lang.org/en/

3 www.cs.waikato.ac.nz/ml/weka/

4 www.ibm.com/developerworks/webservices/library/ws-restful/

5 www.w3.org/RDF/

http://java.net/
http://www.ruby-lang.org/en/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.w3.org/RDF/

Deliverable Report

 9

Some services support additional representations like JavaScript Object Notation (JSON)6, YAML7 or

Application/X-Turtle8 . Some prediction model services provide Predictive Model Markup Language (PMML)

representations (designed by DMG9) to improve their portability, since many machine learning applications like

KNIME10 and Weka provide support for PMML.

Examples of the structure of an Algorithm RDF document can be found at the OpenTox address:

opentox.org/data/documents/development/RDF%20files/Algorithm .

2.3 OpenTox algorithm ontology

A human-readable format of the algorithm ontology, including a graphical representation can be found at

opentox.org/dev/apis/api-1.1/Algorithms. A graphical overview of the current AlgorithmType ontology is

included in the Appendix in this report.

A formal OWL11 representation of the algorithm ontology is available at

opentox.org/data/documents/development/RDF files/AlgorithmTypes/view.

The plan is to extend this ontology in the future to a full description of every algorithm, including references,

parameters and default values. This will be achieved by adopting the Blue Obelisk ontology12 and is currently

work-in-progress.

The RDF representation of an Algorithm contains metadata described by the Dublin Core Specifications13 for

modeling metadata (DC Namespace) and the OpenTox namespace.

The establishment of an ontological base for the services facilitates the extension of the services and the

introduction of new algorithms and new algorithm classes.

2.4 OpenTox algorithm and model Application Programming Interfaces (APIs)

Algorithm and Model APIs are part of the OpenTox API that enables interaction among all OpenTox software

components. The current OpenTox API version is API 1.1 (www.opentox.org/dev/apis/api-1.1). Based on the

REST and RDF principles mentioned before, each algorithm and each model, in RESTful terms, is a resource.

Specifically, a representation of an algorithm contains information about the input a client should provide

(obligatorily or optionally) to invoke the underlying procedure (e.g. training, data preprocessing etc).

 Hereinafter the notation /resource will be used to denote the class of URIs someDomain.com/resource

where someDomain.com can be the domain name of any OpenTox server (such as opentox.ntua.gr:3000,

6 www.json.org/

7 www.yaml.org/

8 www.w3.org/TeamSubmission/turtle/

9 www.dmg.org

10 www.knime.com

11 www.w3.org/TR/owl-features/

12 qsar.svn.sf.net/viewvc/qsar/trunk/qsar-dicts/descriptor-ontology.owl?revision=218

13 dublincore.org/

http://opentox.org/data/documents/development/RDF%20files/Algorithm
http://opentox.org/dev/apis/api-1.1/Algorithms
http://opentox.org/data/documents/development/RDF%20files/AlgorithmTypes/view
http://www.opentox.org/dev/apis/api-1.1
http://www.json.org/
http://www.yaml.org/
http://www.w3.org/TeamSubmission/turtle/
http://www.dmg.org/
http://www.knime.com/
http://www.w3.org/TR/owl-features/
http://qsar.svn.sf.net/viewvc/qsar/trunk/qsar-dicts/descriptor-ontology.owl?revision=218
http://dublincore.org/

Deliverable Report

 10

opentox.informatik.tu-muenchen.de:8080 and ambit.uni-plovdiv.bg:8080). All algorithm resources are placed

under /algorithm and all model resources under /model. For example opentox.ntua.gr:3000/algorithm/svm is

the resource of a Support Vector Machine algorithm and opentox.ntua.gr:3000/model/4538 is a model

resource.

 The algorithm API consists of a number of operations that are described next. Each operation uses one

HTTP method (GET, PUT, POST or DELETE)14:

1. GET /algorithm: Returns a list of all available algorithms on the server in a supported media type; these

include text/uri-list and rdf-related media types like application/rdf+xml, application/x-turtle,

text/x-triple and text/rdf+n3. Optionally, a query can be added in the URI in the form

'/algorithm?sameas={uri of other OpenTox algorithm}' or '/algorithm?type={uri of algorithm type

specified by the OT algorithm type ontology}' to retrieve the algorithms that meet certain requirements.

2. GET /algorithm/{id}: Returns a representation of the algorithm, identified by its id, in a supported

media type specified in the 'Accept' header of the request

3. POST /algorithm/{id}: A POST operation on an algorithm activates the application of the algorithm and

often requires the specification of input parameters. For instance all prediction algorithms (machine

learning or otherwise) need the parameter 'dataset_uri' which is the URI of the training dataset.

Additionally the parameter 'prediction_feature' is mandatory for all supervised learning algorithms; it is

the target feature of the provided dataset. The result from a successful POST operation is the URI of a

created model. Supported media types for the result are all RDF-related and text/uri-list.

Detailed information about the Algorithm API can be found at opentox.org/dev/apis/api-1.1/Algorithm.

The same architectural concept was applied to the construction of the model APIs, which provide access to all

OpenTox models.

- GET /model: Retrieve a complete list of models on the server. Additional queries may optionally be

provided in the URI to get a certain subset of this collection. Examples include ?max=N to restrict the

size of the list, ?sameas={uri of other model} to get a list of the models which are same as a given

model. Other queries may be specified by the service providers.

- GET /model/{id}: Get the representation of a certain model in a supported media type. This

representation contains information about the training algorithm that produced the model, the training

dataset, the independent, dependent and predicted features of the model and the various training

parameters (tuning parameters). An RDF representation is always available while a PMML format is

provided for some classes of models and can be requested as 'application/xml'. Some services support

additional media types such as JSON and YAML.

- GET /model/{id}/independent: Get the list of independent features of the model. Features are

resources themselves so they are characterized by a URI of the form

http://someserver.com/feature/{id}. The independent features of the model are the features of the

training dataset, excluding the target. This list is available in all RDF-related media type

(application/rdf+xml is mandatory) and in text/uri-list format as well.

- GET /model/{id}/dependent: Get the dependent feature of the model, that is the target feature of the

training dataset specified in the “POST /algorithm/{id}” invocation by the 'prediction_feature' POSTed

parameter.

14 www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

http://opentox.org/dev/apis/api-1.1/Algorithm
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Deliverable Report

 11

- GET /model/{id}/predicted: This is a feature that is generated along with the creation of the model; it

is the feature related to the predicted values of the dependent feature using this model.

- DELETE /model/{id}: A model can be deleted by users having proper authorization.

- POST /model/{id}: A dataset or a compound URI can be posted to a prediction model to get

toxicological predictions. The service exploits the underlying model to calculate the predicted values

and returns to the client (within the response body), a URI for the created dataset. This dataset

contains the submitted compounds and their corresponding predictions.

More information about the model API is available at the address opentox.org/dev/apis/api-1.1/Model.

3. Progress achieved to date and future challenges

This section presents the progress achieved so far and the remaining challenges in algorithm prototyping in

terms of the key OpenTox project goals:

3.1 Independent development of components

The initial OpenTox algorithm prototype consists of a set of software components which have already

implemented more than the initially planned QSAR modelling and supporting algorithms. Six OpenTox partners

(IDEA, IST, TUM, NTUA, IBMC, SL-JNU) have been involved in algorithm prototyping using different

programming languages and having different programming backgrounds and experiences. The software

components have been developed as functional building-blocks accessible over standard Internet protocols

independent of platforms and programming languages.

3.2 Interoperability

Interoperability with respect to the OpenTox Framework refers to the principle that different OpenTox

components or services may correctly exchange information with each other and subsequently make use of

that information. Both syntactic interoperability for correct data exchange and semantic interoperability

supporting the accurate communication of meaning and interpretation of data are supported principles for

OpenTox resources. The establishment of a common API standard for all working groups and the introduction

of the OpenTox ontology service have been important steps towards the desired interoperability between

different services, which has been achieved to some extent (several examples that are presented in the detailed

descriptions of algorithms later in this report integrate datasets and algorithm components from different

servers to produce models). However, there are still many challenges to be addressed with regards to

integrating algorithms into applications:

 Investigate further the content of the exchanges messages from the semantic point of view;

 Reduce the amount of data traveling over the web to increase the overall performance;

 Provide correct status codes and additional header information to allow the machines to communicate

better with each other;

 Extend the API to include authorization/authentication mechanisms and to design a security level in a

user friendly-way;

 A task runs on a server and lets the client be aware of the creation, progress and completion of a job.

This way a server gains full control of the asynchronous jobs it runs, while it releases a socket to the

client. Tasks are not yet fully implemented and this fact has slowed down the integration of services so

far.

http://opentox.org/dev/apis/api-1.1/Model

Deliverable Report

 12

3.3 Extensibility

OpenTox needs to be extensible to a broad range of future algorithms and new functionalities that meet the

current trends in QSAR, bioinformatics and predictive toxicology in general. The algorithm APIs allow

developers to add new functionalities or to improve the existing ones without the need to amend the agreed

standard. The REST architecture and the adoption of the RDF, as the main format for modeling meta-

information (two of the most powerful state-of-the-art software design considerations) render the API truly

extensible as most functionalities can be easily appended. An open issue that still remains a challenge

regarding algorithm extensibility is the development and inclusion of consensus modeling techniques.

3.4 User requirements and use cases

The detailed description of a use case is fundamental to understand how the end user will interact with the web

application and provide both a user-friendly interface and a robust and high performance underlying engine to

meet user requirements. Two initial use cases have been identified for the implementation of the OpenTox

Framework prototype. The first case, ToxPredict, is aimed at the user having no or little experience in QSAR

predictions. This use case should offer an easy-to-use user interface, allowing the user to enter a chemical

structure and to obtain in return a toxicity prediction for one or more endpoints. The second case, ToxCreate,

is aimed at the experienced users, allowing them to construct and to validate models using a number of

datasets and algorithms. Both use cases also demonstrate inter-connectivity between multiple partner services.

Within ToxPredict, models produced from partners TUM, IDEA, and NTUA algorithm web services have been

integrated, while in ToxCreate the model construction is performed using partner IST’s algorithm web services.

Important subsequent steps to be pursued in forthcoming development iterations are the integration of

additional algorithm web services into the ToxCreate use case and the interoperation of ToxCreate and

ToxPredict in terms of algorithm, modelling and validation services.

4. Algorithm prototype presentation

Algorithm web services are key components of the overall OpenTox framework and also important parts of the

use cases, as they are responsible for data manipulation, descriptor calculation and selection, reduction of

dimensionality, and most importantly generation of regression and classification (Q)SAR models. All algorithm

services accept a dataset as input, so they assume the existence of a dataset service. Algorithms that have

been included in the initial prototype are summarized next with reference to the categorization, selection and

prioritization of algorithms, as these were presented in deliverable D4.1

The algorithms can be grouped in four categories: descriptor calculation algorithms, classification and

regression algorithms, clustering algorithms and feature selection algorithms. Clustering algorithms form a

new category of algorithms that was not considered in D4.1. A fifth category of algorithms (Algorithms for the

aggregation of results from multiple QSAR models) are of Priority C and will be included only in the final

prototype of (Q)SAR algorithms.

Descriptor calculation algorithms: This category currently includes algorithms which calculate descriptors that

represent chemical structures. There are two different types of molecular descriptors, namely physico-chemical

and (sub)structural descriptors. In the group of structural and sub-structural descriptors, five algorithms have

been implemented (FreeTreeMiner, Fminer, gSpan, MakeMNA, MakeQNA). We have also prototyped two sets of

descriptor calculation algorithms that belong to the group of physico-chemical descriptors, namely the

Chemistry Development Toolkit (CDK) and JOELib. The initial (Q)SAR algorithm prototype contains all

Deliverable Report

 13

descriptor calculation algorithms of priorities A and B. OpenBabel has not been prototyped yet as a separate

software component, but it is implicitly used in the Fminer descriptor calculation implementation for

substructure matching.

Classification and regression algorithms: These services are responsible for the generation of QSAR models

which are stored on the server side and can be used for predicting toxicological properties. They require the

specification of a dataset URI and of a URI for the prediction feature. Some algorithms accept additional

parameters that allow the fine tuning of the training procedure.

For the first prototype we have implemented all algorithms of priority A (MLR as basic regression method, kNN

as basic instance-based lazy learning classification method, J48 decision trees as an eager classification

algorithm implementation and PLS which is very prominent in the QSAR community). Many algorithms of

Priority B (SVM, Lazar, ToxTree) or even Priority C (Gaussian processes for regression, M5P, MaxTox) have also

been prototyped. Additionally, we have implemented one popular machine learning classification algorithm

that was not considered in Deliverable D4.1, namely the Naive Bayes classification method.

Clustering Algorithms: This category contains unsupervised learning algorithms that group objects of similar

kind into respective categories. In other words clustering algorithms are exploratory data analysis tools which

aim at sorting different objects into groups in a way that the degree of association between two objects is

maximal if they belong to the same group and minimal otherwise. The most popular clustering algorithm,

namely the k-means clustering method has been implemented in the initial prototype.

Feature Selection Algorithms: The fourth category contains algorithms for the reduction of the dimensionality

of a dataset, by selecting only a subset of a full set of descriptors included in the dataset. The only feature

selection algorithm of priority A (Info Gain Attribute Evaluation) has been included in the initial prototype.

It should be noted that all algorithm prototypes follow common OpenTox APIs15, regardless of the category to

which they belong. Each algorithm that has been prototyped is described in the next section of this report by a

short text description and a detailed description of the web services that have been developed to implement

the algorithm. Each algorithm implementation is presented in a uniform tabular format that has five logical

parts, described below.

4.1 General Information about the service

The first part of the table provides a description of the service, accompanied by the URI of the resource and a

reference to the current API. Other fields of this table indicate the partner who has been responsible for the

development of the service, a contact person who can provide more information about the implementation and

the date when development of the service was completed. The last comments field can be used for any further

comment on the service including reviews.

4.2 Request/Response information

All algorithm web services require a number of input parameters and respond by providing the URI of the

produced resource (model URI, datasets URI or feature URI). Some of the input parameters are mandatory.

Besides the mandatory parameters, additional algorithm-specific parameters may need to be specified for

some services. This second part of the table presents and describes all the input information and the results

that are associated with each web service implementation.

15 www.opentox.org/dev/apis/api-1.1/Algorithm

http://www.opentox.org/dev/apis/api-1.1/Algorithm

Deliverable Report

 14

4.3 Status codes

This part of the table presents and describes the list of standard response codes that can be produced by each

web service, according to the APIs. The codes help identify the cause of the problem when the service is not

working properly. The term HTTP status code is actually the common term for the HTTP status line that

includes both the HTTP status code and the HTTP reason phrase. For example, the HTTP status line 500:

Internal Server Error is made up of the HTTP status code of 500 and the HTTP reason phrase of Internal Server

Error.

4.4 Implementation Information

The fourth part of the table provides technical details about the prototype implementation, such as the type of

HTTP method that is used to execute the service, the programming languages and the open source libraries

that were integrated into the service.

4.5 Examples

The last part of the table provides examples of the web service. The examples are based on the cURL

command; they can be easily invoked from the command line and can be used by technical reviewers to test

and evaluate the performance of each service.

Deliverable Report

 15

5. Prototype documentation

5.1 Descriptor calculation algorithms

5.1.1 FreeTreeMiner (TUM)

The FreeTreeMiner (FTM) software computes all acyclic substructures (in mathematical terms: free or unrooted

trees) occurring at a given minimum frequency in a set of molecules. The substructures are computed by a

depth-first search. Additionally to the minimum frequency support, a maximum frequency constraint can be

set. This constraint can either refer to the same database/set or to a second one, meaning that all

substructures frequent in the first and infrequent in the second are returned by FTM. The frequent

substructures are returned as SMARTS strings together with their occurrences in the given set of structures.

General Information about the service

 Service description

The FreeTreeMiner (FTM) software computes all acyclic substructures occurring at a given

minimum frequency in a set of molecules.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/FTM

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

Initial version completed in Feb. 2010

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

Email: kramer@in.tum.de

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri= http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39 which should be available

in RDF format. This is a mandatory parameter.

minSup

All free trees that exceed the minimum support (minSup) are calculated.

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/FTM
http://www.opentox.org/dev/apis/api-1.1/Algorithm
http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 16

hydrogen

Determines whether hydrogen atoms are taken into account.

 Response

Once the features for a dataset are generated successfully, datasets URI is returned to the client

within the response and the status is set to 200; otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the dataset_uri.

 404

The resource was not found – Check your spelling: http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/ftm is not identical to http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/FTM. For a complete list of all available algorithms,

check out http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you have posted are acceptable but some internal error has

occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down.

 503

The service is not available for the time being – Try again later!

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used

FTM software package, Open Babel

Deliverable Report

 17

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uniplovdiv.bg:8080/ambit2/dataset/157" -d

"minSup=0.9" http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/FTM

5.1.2 FMiner (IST)

Fminer is a novel method for efficiently mining relevant tree-shaped subgraph descriptors with minimum

frequency and correlation constraints, each representing a set of fragments sharing a common core structure

(backbone), thereby reducing feature set size and runtime. The approach is able to optimize structural inter-

feature entropy as opposed to occurrences, which is characteristic for open or closed fragment mining. In the

experiments, the proposed method reduces feature set sizes by >90% and >30% compared to complete tree

mining and open tree mining, respectively. Evaluation using cross-validation runs shows that their

classification accuracy is similar to the complete set of trees but significantly better than that of open trees.

Compared to open or closed fragment mining, a large part of the search space can be pruned due to an

improved statistical constraint (dynamic upper bound adjustment), which is also confirmed in the experiments

in lower runtimes compared to ordinary (static) upper bound pruning. Further analysis using large-scale

datasets yields insight into important properties of the proposed descriptors, such as dataset coverage and

class size represented by each descriptor. In a large-scale experiment, it was shown that the novel descriptors

render large training sets feasible which previously might have been intractable for computational models.

General Information about the service

 Service description

An OpenTox REST Webservice

Implements the OpenTox algorithm API for fminer

 URI

webservices.in-silico.ch/test/algorithm

 OpenTox API Reference

http://www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 1

 Partner responsible for the implementation

In Silico Toxicology (IST)

 Contact within OT

Christoph Helma helma@in-silico.de

 Comments (including reviews)

http://webservices.in-silico.ch/test/algorithm
mailto:helma@in-silico.de

Deliverable Report

 18

Request/Response Information

 Posted Parameters

dataset_uri:

is mandatory for all kind of prediction algorithms (machine learning or otherwise), as well for data

processing algorithms.

(webservices.in-silico.ch/test/dataset)

feature_uri:

is mandatory for prediction (classification/regression) and other supervised learning algorithms. The

URI of the feature with the endpoint to predict is expected as value.

feature_generation_uri:

URI to the executing algorithm (e.g. http://webservices.in-silico.ch/test/algorithm/fminer).

Supported MIME formats (chemical-mime.sourceforge.net/):

application/rdf+xml (default): read/write OWL-DL

Response

Once the model/features are successfully created, its URI is returned to the client within the

response and the status is set to 200; otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and a new model was generated. The URI of the model is

returned within the response body.

 400

Bad request (Syntax error)

 404

Not found (Resource not available)

 500

Internal Server Error (request failed, e.g. prediction error)

 503

Service Unavailable

http://webservices.in-silico.ch/test/dataset
http://chemical-mime.sourceforge.net/

Deliverable Report

 19

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Ruby and runs as a standalone application. Online CVSs are available at:

github.com/helma/opentox-algorithm

 Libraries used

openbabel: openbabel.org/wiki/Main_Page

fminer: www.maunz.de/libfminer-doc/

Examples

Example 1

Get the OWL-DL representation of fminer

curl http://webservices.in-silico.ch/test/algorithm/fminer

 Example 2

Create fminer features

curl -X POST -d dataset_uri={datset_uri} -d feature_uri={feature_uri} http://webservices.in-

silico.ch/test/algorithm/fminer

(feaure_uri specifies the dependent variable, e.g.

http://www.epa.gov/NCCT/dsstox/CentralFieldDef.html#ActivityOutcome_CPDBAS_Hamster)

Creates a dataset with fminer features (backbone refinement class representatives from supervised

graph mining, see http://www.maunz.de/libfminer-doc/). These features can be used e.g. as

structural alerts, as descriptors (fingerprints) for prediction models or for similarity calculations.

5.1.3 gSpan’ (TUM)

The gSpan’ algorithm implements two optimizations of the widely known gSpan algorithm for mining

molecular databases. Both optimizations apply to the enumeration of subgraph occurrences in a graph

database, which is, also according to our profiling, the most expensive operation of gSpan. The first

optimization reduces the number of subgraph isomorphisms that need to be accessed for proper support

computation in considering the symmetries inherent in many chemical molecules, and the second speeds up

subgraph isomorphism tests by making use of the non-uniform frequency distribution of atom and bond

types.

http://github.com/helma/opentox-algorithm
http://openbabel.org/wiki/Main_Page
http://www.maunz.de/libfminer-doc/

Deliverable Report

 20

General Information about the service

 Service description

The gSpan' software is able to compute all paths, trees and graphs that occur at a given minimum

frequency in a set of molecules.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/gSpan

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

Initial version completed

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

kramer@in.tum.de

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=ambit.uni-plovdiv.bg:8080/ambit2/dataset/39) which should be available in RDF

format. This is a mandatory parameter.

minSup

All free trees that are equal to or exceed the minimum support (minSup) are calculated.

embeddingLists

Use embedding lists.

symmetries

Use symmetries.

fragmentsWithMaxEdges

Restrict search to fragments with maximum i edges.

NumMaxEdges

Number of maximum i edges. (Feature corresponds to fragmentsWithMaxEdges; it can only be set

if fragmentsWithMaxEdges is set to 1).

linearFragments

Restrict search to linear fragments.

acyclicFragments

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/gSpan
http://www.opentox.org/dev/apis/api-1.1/Algorithm
mailto:kramer@in.tum.de
http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 21

Restrict search to acyclic fragments.

 Response

Once the features for a dataset are generated successfully, datasets URI is returned to the client

within the response and the status is set to 200; otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the dataset_uri.

 404

The resource was not found – Check your spelling: http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/gspan is not identical to

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/gSpan. For a complete

list of all available algorithms, check out http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you posted are acceptable but some internal error occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down

 503

The service is not available for the time being – Try again later!

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used

gSpan' software package

Deliverable Report

 22

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/157" -d

"minSup=17" http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/gSpan

5.1.4 JOELIB2

JOELIB2 is a platform-independent open source computational chemistry package written in Java. JOELIB2

consists of an algorithm library that was designed for prototyping, data mining and graph mining of chemical

compounds. JOELib2 is the Java successor of the OELib library from OpenEye.

General Information about the service

 Service description

The JOELIB2 web service enables the user to calculate physicochemical, geometrical descriptors,

functional groups, atom properties and fingerprints.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/JOELIB2

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 09

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

kramer@in.tum.de

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=ambit.uni-plovdiv.bg:8080/ambit2/dataset/39) which should be available in RDF

format. This is a mandatory parameter.

ALL

Calculate all available descriptors.

AcidicGroups

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/gSpan
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/JOELIB2
http://www.opentox.org/dev/apis/api-1.1/Algorithm
http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 23

Number of acidic groups.

AliphaticOHGroups

Number of aliphatic hydroxy groups.

AromaticOHGroups

Number of aromatic hydroxy groups.

AromaticBonds

Number of aromatic bonds.

BasicGroups

Number of basic groups.

FractionRotatableBonds

Fraction of rotatable bonds.

GeometricalDiameter

Calculates the geometrical diameter.

GeometricalRadius

Calculates the geometrical radius.

GeometricalShapeCoefficient

Calculates the geometrical shape coefficient.

GlobalTopologicalChargeIndex

Calculates the Topological Charge Index.

GraphShapeCoefficient

Calculates the graph shape coefficient.

HeavyBonds

Number of heavy bonds.

HeteroCycles

Number of hetero cycles.

HydrophobicGroups

Number of hydrophobic groups.

KierShape1

Calculates the Kier Shape for paths with length one.

KierShape2

Calculates the Kier Shape for paths with length two.

KierShape3

Calculates the Kier Shape for paths with length three.

LogP

Calculates the Octanol/Water partition coefficient (logP) or hydrophobicity.

Deliverable Report

 24

MolarRefractivity

Calculates the molar refractivity (MR).

MolecularWeight

Calculates the molecular weight.

NumberOfAtoms

Number of atoms.

NumberOfBr

Number of bromium atoms.

NumberOfBonds

Number of bonds.

NumberOfC

Number of carbon atoms.

NumberOfCl

Number of chlorine atoms.

NumberOfHal

Number of halogen atoms.

NumberOfI

Number of iod atoms.

NumberOfF

Number of fluorine atoms.

NumberOfN

Number of nitrogen atoms.

NumberOfO

Number of oxygen atoms.

NumberOfP

Number of phospor atoms.

NumberOfS

Number of sulfur atoms.

NO2Groups

Number of NO2 groups.

OSOGroups

Number of OSO groups.

RotatableBonds

Number of rotatable bonds.

SOGroups

Deliverable Report

 25

Number of SO2 groups.

SO2Groups

Number of SO groups.

TopologicalDiameter

Calculates the topological diameter.

TopologicalRadius

Calculates the topological radius.

SSKey3DS

Pharmacophore fingerprint.

 Response

Once the features for a dataset are generated successfully, datasets URI is returned to the client

within the response and the status is set to 200; otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the dataset_uri.

 404

The resource was not found – Check your spelling: http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/joelib2is not identical to

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/JOELIB2. For a complete

list of all available algorithms, check out http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you posted are acceptable but some internal error has

occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down

 503

The service is not available for the time being – Try again later!

Deliverable Report

 26

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used

The service uses the JOELIB2 software package.

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/157" -d

"NumberOfF=true" -d "KierShape3=true" -d "FractionRotatableBonds=true"

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/JOELIB2

5.1.5 The Chemistry Development Kit (CDK)

The Chemistry Development Kit (CDK) is a Java library for structural chemo- and bioinformatics. It is now

developed by more than 50 developers all over the world and used in more than 10 different academic as well

as industrial projects world wide. A number of descriptor implementations are available.

General Information about the service

 Service description

The CDK web service enables the user to calculate a variety of physicochemical and other

descriptors.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/CDKPhysChem

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 09

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

kramer@in.tum.de

 Comments (including reviews)

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/CDKPhysChem
http://www.opentox.org/dev/apis/api-1.1/Algorithm

Deliverable Report

 27

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=ambit.uni-plovdiv.bg:8080/ambit2/dataset/39) which should be available in RDF

format. This is a mandatory parameter.

ALL

Calculate all available descriptors.

ELECTRONIC

Calculate all available electronic descriptors.

GEOMETRICAL

Calculate all available geometrical descriptors.

CONSTITUTIONAL

Calculate all available constitutional descriptors.

HYBRID

Calculate all available hybrid descriptors.

TOPOLOGICAL

Calculate all available topological descriptors.

ALOGP

Calculates atom additive logP and molar refractivity values as described by Ghose and Crippen.

APol

Descriptor that calculates the sum of the atomic polarizabilities (including implicit hydrogens).

AminoAcidCount

Returns the number of amino acids found in the system.

AromaticAtomsCount

Descriptor based on the number of aromatic atoms of a molecule.

AromaticBondsCount

Descriptor based on the number of aromatic bonds of a molecule.

AtomCount

Descriptor based on the number of atoms of a certain element type.

AutocorrelationCharge

The Moreau-Broto autocorrelation descriptors using partial charges.

AutocorrelationMass

The Moreau-Broto autocorrelation descriptors using atomic weight.

AutocorrelationPolarizability

http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 28

The Moreau-Broto autocorrelation descriptors using polarizability.

BCUT

Eigenvalue-based descriptor noted for its utility in chemical diversity described by Pearlman et al.

BPol

Descriptor that calculates the sum of the absolute value of the difference between atomic

polarizabilities of all bonded atoms in the molecule (including implicit hydrogens).

BondCount

Descriptor based on the number of bonds of a certain bond order.

CPSA

A variety of descriptors combining surface area and partial charge information.

CarbonTypes

Characterizes the carbon connectivity in terms of hybridization.

ChiChain

Evaluates the Kier & Hall Chi chain indices of orders 3,4,5 and 6.

ChiCluster

Evaluates the Kier & Hall Chi cluster indices of orders 3,4,5,6 and 7.

ChiPathCluster

Evaluates the Kier & Hall Chi path cluster indices of orders 4,5 and 6.

ChiPath

Evaluates the Kier & Hall Chi path indices of orders 0,1,2,3,4,5,6 and 7.

EccentricConnectivityIndex

A topological descriptor combining distance and adjacency information.

FragmentComplexity

Class that returns the complexity of a system. The complexity is defined as @cdk.cite{Nilakantan06}.

GravitationalIndex

Descriptor characterizing the mass distribution of the molecule.

HBondAcceptorCount

Descriptor that calculates the number of hydrogen bond acceptors.

HBondDonorCount

Descriptor that calculates the number of hydrogen bond donors.

IPMolecularLearning

Descriptor that evaluates the ionization potential.

KappaShapeIndices

Descriptor that calculates Kier and Hall kappa molecular shape indices.

KierHallSmarts

Deliverable Report

 29

Counts the number of occurrences of the E-state fragments.

LargestChain

Returns the number of atoms in the largest chain.

LargestPiSystem

Returns the number of atoms in the largest pi chain.

LengthOverBreadth

Calculates the ratio of length to breadth.

LongestAliphaticChain

Returns the number of atoms in the longest aliphatic chain.

MDE

Evaluates molecular distance edge descriptors for C, N and O.

MomentOfInertia

Descriptor that calculates the principal moments of inertia and ratios of the principal moments. Als

calculates the radius of gyration.

PetitjeanNumber

Descriptor that calculates the Petitjean Number of a molecule.

PetitjeanShapeIndex

The topological and geometric shape indices described by Petitjean and Bath et al. respectively. Both

measure the anisotropy in a molecule.

RotatableBondsCount

Descriptor that calculates the number of non-rotatable bonds on a molecule.

RuleOfFive

This Class contains a method that returns the number of failures of the Lipinski's Rule Of Five.

TPSA

Calculation of topological polar surface area based on fragment contributions.

VAdjMa

Descriptor that calculates the vertex adjacency information of a molecule.

WHIM

Holistic descriptors described by Todeschini et al.

Weight

Descriptor based on the weight of atoms of a certain element type. If no element is specified, the

returned value is the Molecular Weight.

WeightedPath

The weighted path (molecular ID) descriptors described by Randic. They characterize molecular

branching.

WienerNumbers

Deliverable Report

 30

This class calculates Wiener path number and Wiener polarity number.

XLogP

Prediction of logP based on the atom-type method called XLogP.

ZagrebIndex

The sum of the squared atom degrees of all heavy atoms.

 Response

Once the features for a dataset are generated successfully, datasets URI is returned to the client

within the response and the status is set to 200; otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the dataset_uri.

 404

The resource was not found – Check your spelling: http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/cdkphyschem is not identical to

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/CDKPhysChem. For a

complete list of all available algorithms, check out http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you have posted are acceptable but some internal error has

occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down.

 503

The service is not available for the time being – Try again later!

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used The service uses the CDK software package.

Deliverable Report

 31

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/157" -d

"HBondAcceptorCountDescriptor=true" -d "ALL=false" -d "ELECTRONIC=true"

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/CDKPhysChem

5.1.6 MakeMNA/MakeQNA

MakeMNA is a software product for generating MNA descriptors.

These descriptors are based on the molecular structure representation, which includes the hydrogens

according to the valences and partial charges of other atoms and does not specify the types of bonds. MNA

descriptors are generated as a recursively defined sequence:

 zero-level MNA descriptor for each atom is the mark A of the atom itself;

 any next-level MNA descriptor for the atom is the sub-structure notation A(D1,D2,..Di…), where Di is

the previous-level MNA descriptor for i–th immediate neighbors of the atom A.

The mark of atom may include not only the atomic type but also any additional information about the atom. In

particular, if the atom is not included into the ring, it is marked by “-”. The neighbor descriptors D1,D2,...Di…

are arranged in a unique manner, e.g., in lexicographic order. An iterative process of MNA descriptors

generation can be continued covering first, second, etc. neighborhoods of each atom.

MakeQNA is a software product for generating QNA descriptors.

Quantitative Neighborhoods of Atoms (QNA) descriptors are based on quantities of ionization potential (IP) and

electron affinity (EA) of each atom of the molecule. They are calculated as follows:

 Pi = Bi-½∑k(exp(-½C))ikBk-½,

 Qi = Bi-½∑k(exp(-½C))ikBk-½Ak,

 Ai = ½(IPi + EAi), Bi = IPi – EAi.

Where IPi is the ionization potential (the energy required to remove the outermost electron from a neutral

gaseous atom), and EAi is the electron affinity (the energy released when an electron is added to a neutral

gaseous atom of that element) of atom i.

General Information about the service

Service description

The MakeMNA/MakeQNA web service provides the possibility to calculate Multilevel

Neighborhoods of Atom (MNA) descriptors and Quantitative Neighborhoods of Atoms (QNA)

descriptors for structures of chemicals represented in MOL V2000 format (SYMYX MDL).

URI

195.178.207.160/OpenTox/algorithm/MakeMNA

OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

http://195.178.207.160/OpenTox/algorithm/MakeMNA
http://www.opentox.org/dev/apis/api-1.1/Algorithm

Deliverable Report

 32

Date completed

2010 - February 15

Partner responsible for the implementation

Institute of Biomedical Chemistry of Russian Academy of Medical Sciences

Contact within OT

Alexey Zakharov alexey.zakharov@ibmc.msk.ru

Comments (including reviews)

Request/Response Information

Posted Parameters

dataset_uri

(e.g. dataset_uri= 195.178.207.160/OpenTox/dataset/3) which should be available in RDF

format. This is a mandatory parameter.

Response

Once the feature is successfully created, its URI is returned to the client within the response and

the status is set to 200; otherwise an explanatory message is provided.

Status Codes

200

Success – The request has succeeded and a new feature was generated. The URI of the model is

returned within the response body.

400

Bad Request – Some parameter you provided is wrong or you didn't post some mandatory

parameter such as the dataset_uri or/and the target. A list of errors and explanatory messages

is returned within the response.

404

The resource was not found – Check your spelling. For a complete list of all available

algorithms, check out http://195.178.207.160:7000/algorithm/MNA

http://195.178.207.160:7000/algorithm/QNA

500

Internal Server Error – The parameters you posted are acceptable but some internal error

occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down.

503 The service is not available for the time being – Try again later!

http://195.178.207.160/OpenTox/dataset/3

Deliverable Report

 33

Implementation Information

HTTP Method

POST

Programming Language

The project was built in Delphi/PHP and runs as a standalone service.

Libraries used

None

Examples

Example 1

curl -X POST -d "dataset_uri=http://195.178.207.160/OpenTox/dataset/3"

http://195.178.207.160/OpenTox/algorithm/MakeMNA

5.2 Classification and regression algorithms

5.2.1 Gaussian processes for regression

GPR (Gaussian Processes for Regression) is a method of supervised learning. A Gaussian process is a

generalization of the Gaussian probability distribution. Whereas a probability distribution describes random

variables which are scalars or vectors (for multivariate distributions), a stochastic process governs the

properties of functions [RAS05]. Just as a Gaussian distribution is fully specified by its mean and covariance

matrix, a Gaussian process is specified by a mean and covariance function. Here, the mean is a function of x

(which we will often take to be the zero function), and the covariance is a function C(x, x’) that expresses the

expected covariance between the values of the function y at the points x and x’. The function y(x) in any one

data modeling problem is assumed to be a single sample from this Gaussian distribution.

General Information about the service

 Service description

The Gaussian Process web service enables the user to build regression models for a specific dataset.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 09

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP
http://www.opentox.org/dev/apis/api-1.1/Algorithm

Deliverable Report

 34

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

kramer@in.tum.de

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=ambit.uni-plovdiv.bg:8080/ambit2/dataset/39) which should be available in

RDF format. This is a mandatory parameter.

kernel

{PolyKernel, Puk, RBFKernel}

the kernel to use

gamma

parameter for the rbf kernel only

omega

parameter for the puk kernel only

sigma

parameter for the puk kernel only

exponent

parameter for the polynomial kernel only

noise

parameter for the polynomial kernel only

 Response

A task URI is provided if the service tries to calculate a regression model. The task URI can be

queried (GET) for the resulting model URI. Otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

mailto:kramer@in.tum.de
http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 35

303

Redirect – the result can be found elsewhere.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the dataset_uri.

 404

The resource was not found – Check your spelling: http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/gaussp not identical to

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP. For a

complete list of all available algorithms, check out http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you posted are acceptable but some internal error has

occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down.

 503

The service is not available for the time being – Try again later!

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used

The service uses the WEKA software package.

Deliverable Report

 36

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/23" -d

"prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/12818"

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP

Example 2

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/158" -d

"prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/29634"

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP

5.2.2 MLR

MLR (Multiple Linear Regression) is a simple and popular statistical technique that uses several explanatory

(independent) variables to predict the outcome of a response (dependent) variable. The model creates a

relationship in the form of a straight line (linear) that best approximates all the individual data points. The

algorithm type according to the OpenTox ontology is: Algorithm-MLDMTox-Learning-Regression-eager.

General Information about the service

Service description

Train a multiple linear regression model providing a dataset URI, the target feature of the dataset. No

tuning parameters are required for this algorithm. MLR models express the dependent variable as a

linear combination of the other variables plus a bias (intercept). Once the model is successfully created,

its URI is returned to the client within the response and the status is set to 200; otherwise an

explanatory message is provided.

URI

opentox.ntua.gr:3000/algorithm/mlr

Date completed

2009 - December 28

OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

Partner responsible for the implementation

National Technical University of Athens

Contact within OT

Pantelis Sopasakis chung@central.ntua.gr

Comments (including reviews)

http://opentox.ntua.gr:3000/algorithm/mlr
http://www.opentox.org/dev/apis/api-1.1/Algorithm

Deliverable Report

 37

Request/Response Information

Posted Parameters

dataset_uri

(e.g. dataset_uri=opentox.ntua.gr/ds.rdf) which should be available in RDF format. This is a mandatory

parameter.

Target

The URI of the feature of the dataset that should be used as the target (dependent) variable while

training the model. This should not only be a valid URI but additionally be a feature of the dataset. This

is a mandatory parameter.

Response

Once the model is successfully created, its URI is returned to the client within the response and the

status is set to 200; otherwise an explanatory message is provided.

Status Codes

200

Success – The request has succeeded and a new model was generated. The URI of the model is returned

within the response body.

400

Bad Request – Some parameter you provided is wrong or you didn't post some mandatory parameter

such as the dataset_uri or/and the target. A list of errors and explanatory messages is returned within

the response.

404

The following message is returned to the client:

You have requested an algorithm which does not exist. You can get a complete list of all available

algorithms at opentox.ntua.gr:3000/algorithm

500

Internal Server Error – The parameters you posted are acceptable but some internal error occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it received

an unsuccessful response. In such a case, it seems that some other server is down.

503

The service is not available for the time being – Try again later!

http://opentox.ntua.gr/ds.rdf

Deliverable Report

 38

Implementation Information

HTTP Method

POST

Programming Language

Java

Libraries used

The service uses the class LinearRegression which is included in Weka (version 3.6.0)

Examples

Example 1. Train an MLR Regression Model

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/6" -d

"prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/11954"

http://opentox.ntua.gr:3000/algorithm/mlr

5.2.3 SVM

Support vector machines (SVM) are a set of supervised learning methods used for classification and regression.

In the most widely used two-class SVM classification method, input data are viewed as two sets of vectors in

the multi-dimensional input space. The SVM classifier constructs a separating hyperplane in that space, one

which maximizes the margin between the two data sets. The method is extended to multi-class and nonlinear

classification problems by using a nonlinear kernel function. To obtain an optimum classifier for non-separable

data, a penalty is introduced for misclassified data. This penalty is zero for patterns classified correctly, and

has a positive value that increases with the distance from the corresponding hyperplane for patterns that are

not situated on the correct side of the classifier. Similar concepts are used in the SVM regression problem,

where the objective is to identify a function that for all training patterns has a maximum deviation ε from the

target (experimental) values. The algorithm type according to the OpenTox ontology is: Algorithm-MLDMTox-

Learning-Classification-eager for the SVM classification method and Algorithm-MLDMTox-Learning-

Regression-eager for SVM regression

5.2.3.1 SVM regression

General Information about the service

Service description

Train an SVM regression model providing a dataset URI, the target feature of the dataset and optionally

a set of tuning parameters such as the kernel to be used.

URI

opentox.ntua.gr:3000/algorithm/svm

http://opentox.ntua.gr:3000/algorithm/svm

Deliverable Report

 39

Date completed

2009 - December 28

OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

Partner responsible for the implementation

National Technical University of Athens

Contact within OT

Pantelis Sopasakis chung@central.ntua.gr

Comments (including reviews)

Request/Response Information

Posted Parameters

dataset_uri

(e.g. dataset_uri=opentox.ntua.gr/ds.rdf) which should be available in RDF format. This is a

mandatory parameter.

Target

The URI of the feature of the dataset that should be used as the target (dependent) variable while

training the model. This should not only be a valid URI but additionally be a feature of the dataset.

This is a mandatory parameter.

Kernel

Is the kernel function of the Support Vectors. You may choose among rbf, linear and polynomial. This

parameter is not case sensitive, so kernel=rbf and kernel=RBF is the same. This parameter is optional

and its default value is RBF. If you use the RBF kernel you may specify the gamma parameter, while if

you choose the polynomial one, you may specify the degree and coeff0 parameters.

Gamma

The γ parameter for the RBF kernel. This is an optional parameter and its default value is 1.0. The

value of gamma you specify must be double and strictly positive, otherwise an error message is

returned and the status code of the response is set to 400 (Bad request). This parameter will be

omitted if combined with kernels other than RBF.

Degree

When using the Polynomial kernel, degree is the maximum exponent of the kernel function. This

parameter has to be integer and greater or equal to 1, otherwise an error message is returned and the

status code of the response is set to 400 (Bad request). This is an optional parameter and its default

value is 3.

Epsilon

The ε – parameter of the ε-SVR algorithm that is used for the training. The parameter is optional and

its default value is 0.1. epsilon can be any positive double.

cacheSize

Size of cache to be used for storing the SVM kernels in bytes. Must be a non-negative integer and

http://www.opentox.org/dev/apis/api-1.1/Algorithm
http://opentox.ntua.gr/ds.rdf

Deliverable Report

 40

prime. This parameter is optional and its default value is 250007. If set to 0, all available cache will be

used. For no cache, set this variable to -1.

Tolerance

Tolerance used as a convergence/termination criterion while training the model. Large values of

tolerance imply fast computations but less accurate models. Extremely small tolerance values (e.g. 1E-

12) should be avoided as they could impose great computational burdens and destabilize the

convergence of the training algorithm. The default value for this parameter is 0.0001 or 1E-4.

coeff0

It is the bias of the kernel k(x,y)+coeff0

Cost

Coefficient of the cost function used to train the model. This is a strictly positive double valued

parameter which is optional and its default value is 10.0.

Response

Once the model is successfully created, its URI is returned to the client within the response and the

status is set to 200; otherwise an explanatory message is provided.

Status Codes

200

Success – The request has succeeded and a new model was generated. The URI of the model is

returned within the response body.

400

Bad Request – Some parameter you provided is wrong or you didn't post some mandatory parameter

such as the dataset_uri or/and the target. A list of errors and explanatory messages is returned within

the response.

404

The following message is returned to the client:

You have requested an algorithm which does not exist. You can get a complete list of all available

algorithms at opentox.ntua.gr:3000/algorithm

500

Internal Server Error – The parameters you posted are acceptable but some internal error occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it received

an unsuccessful response. In such a case, it seems that some other server is down.

503

The service is not available for the time being – Try again later!

http://opentox.ntua.gr:3000/algorithm

Deliverable Report

 41

Implementation Information

HTTP Method

POST

Programming Language

The project was built in Java and runs as a standalone application. Online CVSs are available at:

github.com/alphaville/yaqp-turbo

Libraries used

The service uses the class SVMreg which is included in Weka (version 3.6.0)

Examples

Example 1 – Train an SVM Regression Model using the default parameter values

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/6" -d

"prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/11954"

http://opentox.ntua.gr:3000/algorithm/svm

Example 2 – Train an SVM Regression Model by setting the parameter values

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/6" -d

"prediction_feature=http://ambit.uni-

plovdiv.bg:8080/ambit2/feature/11954&gamma=1.5&epsilon=0.034&cacheSize=1000&tolerance=0.01&kern

el=RBF&cost=1000" http://opentox.ntua.gr:3000/algorithm/svm

5.2.3.2 SVM classification

General Information about the service

 Service description

Train an SVM classification model providing a dataset URI, the target feature of the dataset and

optionally a set of tuning parameters such as the kernel to be used. The service can be applied on

datasets that include nominal features.

 URI

opentox.ntua.gr:3000/algorithm/svm

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

http://github.com/alphaville/yaqp-turbo
http://opentox.ntua.gr:3000/algorithm/svm
http://www.opentox.org/dev/apis/api-1.1/Algorithm

Deliverable Report

 42

 Date completed

2009 - December 28

 Partner responsible for the implementation

National Technical University of Athens

 Contact within OT

Pantelis Sopasakis chung@central.ntua.gr

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=opentox.ntua.gr/ds.rdf) which should be available in RDF format. This is a

mandatory parameter. Note that the training dataset must have at least one nominal feature. All

string features are excluded from the training procedure.

Target

The URI of the feature of the dataset that should be used as the target (dependent) variable while

training the model. This should not only be a valid URI but additionally be a feature of the dataset

and must be nominal. This is a mandatory parameter.

Kernel

Is the kernel function of the Support Vectors. You may choose among rbf, linear and polynomial. This

parameter is not case sensitive, so kernel=rbf and kernel=RBF is the same. This parameter is optional

and its default value is RBF. If you use the RBF kernel you may specify the gamma parameter while if

you choose the polynomial one, you may specify the degree and coeff0 parameters.

Gamma

The γ parameter for the RBF kernel. This is an optional parameter and its default value is 1.0. The

value of gamma you specify must be double and strictly positive, otherwise an error message is

returned and the status code of the response is set to 400 (Bad request). This parameter will be

omitted if combined with kernels other than RBF.

Degree

When using the Polynomial kernel, degree is the maximum exponent of the kernel function. This

parameter has to be integer and greater or equal to 1, otherwise an error message is returned and

the status code of the response is set to 400 (Bad request). This is an optional parameter and its

default value is 3.

cacheSize

Size of cache to be used for storing the SVM kernels in bytes. Must be a non-negative integer and

prime. This parameter is optional and its default value is 250007. If set to 0, all available cache will

be used. For no cache, set this variable to -1.

Tolerance

http://opentox.ntua.gr/ds.rdf

Deliverable Report

 43

Tolerance used as a convergence/termination criterion while training the model. Large values of

tolerance imply fast computations but less accurate models. Extremely small tolerance values (e.g.

1E-12) should be avoided as they could impose great computational burdens and destabilize the

convergence of the training algorithm. The default value for this parameter is 0.0001 or 1E-4.

coeff0

It is the bias of the kernel k(x,y)+coeff0

Cost

Coefficient of the cost function used to train the model. This is a strictly positive double valued

parameter which is optional and its default value is 10.0.

 Response

Once the model is successfully created, its URI is returned to the client within the response and the

status is set to 200; otherwise an explanatory message is provided.

Status Codes

200

Success – The request has succeeded and a new model was generated. The URI of the model is

returned within the response body.

400

Bad Request – Some parameter you provided is wrong or you didn't post some mandatory parameter

such as the dataset_uri or/and the target. A list of errors and explanatory messages is returned within

the response.

404

The following message is returned to the client:

You have requested an algorithm which does not exist. You can get a complete list of all available

algorithms at opentox.ntua.gr:3000/algorithm

500

Internal Server Error – The parameters you posted are acceptable but some internal error occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it received

an unsuccessful response. In such a case, it seems that some other server is down.

503

The service is not available for the time being – Try again later!

Deliverable Report

 44

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application. Online CVSs are available at:

github.com/alphaville/yaqp-turbo

 Libraries used

The service uses the class SMO of Weka.

Examples

Example 1 – Train an SVM Classification Model using the default parameter values

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/9" -d

"prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/12136"

http://opentox.ntua.gr:3000/algorithm/svc

Example 2 – Train an SVM Classification Model by setting the parameter values

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/9" -d

"prediction_feature=http://ambit.uni-

plovdiv.bg:8080/ambit2/feature/12136&gamma=1.5&cacheSize=1000&tolerance=0.01&kernel=RBF&cost=10

00" http://opentox.ntua.gr:3000/algorithm/svc

Example 3 – Use an SVM model for prediction

Let http://opentox.ntua.gr:3000/model/x be a model produced by the abovementioned service (examples 1

and 2). Then the following command can be used to obtain predictions for a given dataset:

curl -X POST -d 'dataset_uri=http://abmit.uni-plovdiv.bg:8080/ambit2/dataset/9'

http://opentox.ntua.gr:3000/model/x

The produced dataset contains the data entries of the initial dataset plus the predicted ones.

Example 4 – Get the predicted, independent and dependent features from a model resource

curl http://opentox.ntua.gr:3000/model/model_id/predicted

curl http://opentox.ntua.gr:3000/model/model_id/dependent

curl http://opentox.ntua.gr:3000/model/model_id/independent

5.2.4 KNN

The k-nearest neighbors algorithm (kNN) is a method for classifying objects based on closest training

examples in the feature space. It is a type of instance-based learning, or lazy learning where the function is

only approximated locally and all computation is delayed until classification. A majority vote of an object’s

neighbors is used for classification, with the object being assigned to the class most common amongst its k

http://github.com/alphaville/yaqp-turbo

Deliverable Report

 45

(positive integer, typically small) nearest neighbors. If k is set to 1, then the object is simply assigned to the

class of its nearest neighbor. The knn algorithm can also be applied for regression in the same way by simply

assigning the property value for the object to be the average of the values of its k nearest neighbors. It can be

useful to weight the contributions of the neighbors, so that the nearer neighbors contribute more to the

average than the more distant ones. No explicit training step is required since training consists of just storing

training instance feature vectors and corresponding class labels. In order to identify neighbors, the objects are

represented by position vectors in a multidimensional feature space. It is usual to use the Euclidean distance,

but also further distance measures, such as the Manhattan distance could be used instead. In the

classification/testing phase, the test sample is represented as a vector in the feature space. Distances from this

vector to all stored vectors are computed and the k closest samples are selected to determine the class/real-

value of the test instance.

The k-nearest neighbor algorithm is sensitive to the local structure of the data. The best choice of k depends

upon the data; generally, larger values of k reduce the effect of noise on the classification, but make

boundaries between classes less distinct. A good k can be selected by various heuristic techniques like cross-

validation. The accuracy of the kNN algorithm can be severely degraded by the presence of noisy or irrelevant

features, or if the feature scales are not consistent with their importance.

General Information about the service

 Service description

The kNNregression and kNNclassification web services enable the user to build

regression/classification models for a specific dataset using the lazy nearest neighbor approach.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/kNNregression

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/kNNclassification

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 09

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

kramer@in.tum.de

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=ambit.uni-plovdiv.bg:8080/ambit2/dataset/39) which should be available in RDF

format. This is a mandatory parameter.

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/kNNregression
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/kNNclassification
http://www.opentox.org/dev/apis/api-1.1/Algorithm
hhttp://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 46

KNN

set the k parameter – number of neighbors considered.

distanceWeighting

0 for no distance weighting, I for 1/distance or F for 1-distance.

meanSquared

Whether the mean squared error is used rather than mean absolute error when doing cross-

validation for regression problems.

windowSize

Gets the maximum number of instances allowed in the training pool. The addition of new instances

above this value will result in old instances being removed. A value of 0 signifies no limit to the

number of training instances.

 Response

A task URI is provided if the service tries to calculate a regression model. The task URI can be

queried (GET) for the resulting model URI. Otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

303

Redirect – the result can be found elsewhere.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the dataset_uri.

 404

The resource was not found – Check your spelling: http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/knnRegression not identical to

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/kNNregression. For a

complete list of all available algorithms, check out http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you posted have are acceptable but some internal error has

occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

Deliverable Report

 47

received an unsuccessful response. In such a case, it seems that some other server is down.

 503

The service is not available for the time being – Try again later!

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used

The service uses the WEKA software package.

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uniplovdiv.bg:8080/ambit2/dataset/23" -d

"prediction_feature=http://ambit.uniplovdiv.bg:8080/ambit2/feature/12818" -d 'KNN=7'

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/kNNregression

Example 2

curl -X POST -d "dataset_uri=http://ambit.uniplovdiv.bg:8080/ambit2/dataset/23" -d

"prediction_feature=http://ambit.uniplovdiv.bg:8080/ambit2/feature/12818" -d 'KNN=7'

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/kNNclassification

5.2.5 Lazar (IST)

Lazar is a k-nearest-neighbor approach to predict chemical endpoints from a training set based on structural

fragments. It uses pre-computed fragments with occurrences as well as target class information for each

compound as training input. It also features regression, in which case the target activities consist of continuous

values. Lazar uses activity-specific similarity (i.e. each fragment contributes with its significance for the target

activity) that is the basis for predictions and confidence index for every single prediction.

For classification, a weighted nearest neighbor voting is the standard prediction, whereas for regression a

kernel model based on activity-specific similarity is used by default. A kernel model is also available for

classification, as well as a multi-linear model for regression.

General Information about the service

 Service description

An OpenTox REST Webservice that implements the OpenTox algorithm API for lazar.

Deliverable Report

 48

 URI

webservices.in-silico.ch/test/algorithm

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 1

 Partner responsible for the implementation

In Silico Toxicology (IST)

 Contact within OT

Christoph Helma helma@in-silico.de

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri:

is mandatory for all kind of prediction algorithms (machine learning or otherwise), as well for data

processing algorithms.

(webservices.in-silico.ch/test/dataset)

feature_uri:

is mandatory for prediction (classification/regression) and other supervised learning algorithms. The

URI of the feature with the endpoint to predict is expected as value.

feature_generation_uri:

URI to the executing algorithm (e.g. http://webservices.in-silico.ch/test/algorithm/fminer).

Supported MIME formats (chemical-mime.sourceforge.net/):

application/rdf+xml (default): read/write OWL-DL

Response

Once the model/features are successfully created, its URI is returned to the client within the response

and the status is set to 200; otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and a new model was generated. The URI of the model is

returned within the response body.

http://webservices.in-silico.ch/test/algorithm
http://www.opentox.org/dev/apis/api-1.1/Algorithm
http://webservices.in-silico.ch/test/dataset
http://chemical-mime.sourceforge.net/

Deliverable Report

 49

 400

Bad request (Syntax error)

 404

Not found (Resource not available)

 500

Internal Server Error (request failed, e.g. prediction error)

 503

Service Unavailable

Implementation Information

 HTTP Method

GET, POST

 Programming Language

The project was built in Ruby and runs as a standalone application. Online CVSs are available at:

github.com/helma/opentox-algorithm

 Libraries used

openbabel: openbabel.org/wiki/Main_Page

fminer: www.maunz.de/libfminer-doc/

Examples

Example 1

Get the OWL-DL representation of lazar

curl http://webservices.in-silico.ch/test/algorithm/lazar

Example 2

Create lazar model

curl -X POST -d dataset_uri={datset_uri} -d feature_uri={feature_uri} -d

feature_generation_uri=http://webservices.in-silico.ch/test/algorithm/fminer http://webservices.in-

silico.ch/test/algorithm/lazar

(feaure_uri specifies the dependent variable, e.g.

http://www.epa.gov/NCCT/dsstox/CentralFieldDef.html#ActivityOutcome_CPDBAS_Hamster)

5.2.6 J48

J48 implements Quinlan’s C4.5 algorithm for generating a pruned or un-pruned C4.5 decision tree. C4.5 is an

extension of Quinlan's earlier ID3 algorithm. The decision trees generated by J48 can be used for classification.

J48 builds decision trees from a set of labeled training data using the concept of information entropy. It uses

the fact that each attribute of the data can be used to make a decision by splitting the data into smaller

http://github.com/helma/opentox-algorithm
http://openbabel.org/wiki/Main_Page
http://www.maunz.de/libfminer-doc/

Deliverable Report

 50

subsets. J48 examines the normalized information gain (difference in entropy) that results from choosing an

attribute for splitting the data. To make the decision, the attribute with the highest normalized information

gain is used. Then the algorithm recurs on the smaller subsets. The splitting procedure stops if all instances in

a subset belong to the same class. Then a leaf node is created in the decision tree telling to choose that class.

But it can also happen that none of the features give any information gain. In this case J48 creates a decision

node higher up in the tree using the expected value of the class.

J48 can handle both continuous and discrete attributes, training data with missing attribute values and

attributes with differing costs. Further it provides an option for pruning trees after creation.

General Information about the service

 Service description

The J48 web service enables the user to build classification models for a specific dataset with the

C4.5 algorithm.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/J48

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 09

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

kramer@in.tum.de

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=ambit.uni-plovdiv.bg:8080/ambit2/dataset/39) which should be available in RDF

format. This is a mandatory parameter.

binarySplits

use binary splits on nominal attributes when building trees.

confidenceFactor

the confidence factor used for pruning (smaller values incur more pruning).

minNumObj

minimum number of instances per leaf.

numFolds

Determines the amount of data used for reduced-error pruning. One fold is used for pruning, the

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/J48
http://www.opentox.org/dev/apis/api-1.1/Algorithm
http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 51

rest for growing the tree.

reducedErrorPruning

Whether reduced-error pruning is used instead of C.4.5 pruning.

seed

The seed used for randomizing the data when reduced-error pruning is used.

subtreeRaising

Whether to consider the subtree raising operation when pruning.

unpruned

Whether pruning is performed.

useLaplace

Whether counts at leaves are smoothed based on Laplace.

 Response

A task URI is provided if the service tries to calculate a regression model. The task URI can be

queried (GET) for the resulting model URI. Otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

303

Redirect – the result can be found elsewhere.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory parameter

such as the dataset_uri.

 404

The resource was not found – Check your spelling. For a complete list of all available algorithms,

check out http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you have posted are acceptable but some internal error has

occurred.

Deliverable Report

 52

 502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down.

 503

The service is not available for the time being – Try again later!

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used

The service uses the WEKA software package.

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uniplovdiv.bg:8080/ambit2/dataset/6" -d

"prediction_feature=http://ambit.uniplovdiv.bg:8080/ambit2/feature/12818" http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/J48

5.2.7 M5P

M5P is a reconstruction of Quinlan’s M5 algorithm for inducing trees of regression models. M5P combines a

conventional decision tree with the possibility of linear regression functions at the nodes. First, a decision-tree

induction algorithm is used to build a tree, but instead of maximizing the information gain at each inner node,

a splitting criterion is used that minimizes the intra-subset variation in the class values down each branch. The

splitting procedure in M5P stops if the class values of all instances that reach a node vary very slightly, or only

a few instances remain. Second, the tree is pruned back from each leaf. When pruning an inner node is turned

into a leaf with a regression plane. Third, to avoid sharp discontinuities between the subtrees a smoothing

procedure is applied that combines the leaf model prediction with each node along the path back to the root,

smoothing it at each of these nodes by combining it with the value predicted by the linear model for that node.

Techniques devised by Breiman et al. for their CART system are adapted in order to deal with enumerated

attributes and missing values. All enumerated attributes are turned into binary variables so that all splits in

M5P are binary. As to missing values, M5P uses a technique called “surrogate splitting” that finds another

attribute to split on in place of the original one and uses it instead. During training, M5P uses as surrogate

attribute the class value in the belief that this is the attribute most likely to be correlated with the one used for

splitting. When the splitting procedure ends, all missing values are replaced by the average values of the

corresponding attributes of the training examples reaching the leaves. During testing an unknown attribute

value is replaced by the average value of that attribute for all training instances that reach the node, with the

Deliverable Report

 53

effect of choosing always the most populated subnode.

M5P generates models that are compact and relatively comprehensible.

General Information about the service

 Service description

The M5P web service enables the user to build regression models for a specific dataset with the M5

algorithm by R. Quinlan and Yong Wang.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/M5P

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 09

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

kramer@in.tum.de

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=ambit.uni-plovdiv.bg:8080/ambit2/dataset/39) which should be available in RDF

format. This is a mandatory parameter.

binarySplits

use binary splits on nominal attributes when building trees.

confidenceFactor

the confidence factor used for pruning (smaller values incur more pruning).

minNumObj

minimum number of instances per leaf.

numFolds

Determines the amount of data used for reduced-error pruning. One fold is used for pruning, the

rest for growing the tree,

reducedErrorPruning

Whether reduced-error pruning is used instead of C.4.5 pruning.

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/M5P
http://www.opentox.org/dev/apis/api-1.1/Algorithm
http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 54

seed

The seed used for randomizing the data when reduced-error pruning is used.

subtreeRaising

Whether to consider the subtree raising operation when pruning.

unpruned

Whether pruning is performed.

useLaplace

Whether counts at leaves are smoothed based on Laplace.

 Response

A task URI is provided if the service tries to calculate a regression model. The task URI can be

queried (GET) for the resulting model URI. Otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

303

Redirect – the result can be found elsewhere.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the dataset_uri.

 404

The resource was not found – Check your spelling. For a complete list of all available algorithms,

check out http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you have posted are acceptable but some internal error has

occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down.

 503

The service is not available for the time being – Try again later!

Deliverable Report

 55

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used

The service uses the WEKA software package.

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uniplovdiv.bg:8080/ambit2/dataset/39" -d

"prediction_feature=http://ambit.uniplovdiv.bg:8080/ambit2/feature/12818"

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/J48

5.2.8 Naive Bayes

The Naive Bayes algorithm is based on conditional probabilities. It uses Bayes' Theorem, a formula that

calculates a probability by counting the frequency of values and combinations of values in the historical data.

Naive Bayes makes the assumption that each predictor is conditionally independent of the others. In practice,

this assumption of independence, even when violated, does not degrade the model's predictive accuracy

significantly, and makes the difference between a fast, computationally feasible algorithm and an intractable

one.

General Information about the service

 Service description

One of the most simple yet widely used probabilistic models in classification theory is found in the

naive Bayes approach. This is a web service which provides an interface for training such models. The

service can be applied on datasets whose target variables are nominal.

 URI

opentox.ntua.gr:3000/algorithm/naiveBayes

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 22

 Partner responsible for the implementation

National Technical University of Athens

http://opentox.ntua.gr:3000/algorithm/naiveBayes
http://www.opentox.org/dev/apis/api-1.1/Algorithm

Deliverable Report

 56

 Contact within OT

Pantelis Sopasakis chung@central.ntua.gr

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=opentox.ntua.gr/ds.rdf) which should be available in RDF format. This is a

mandatory parameter. Note that the training dataset must have at least one nominal feature. All

string features are excluded from the training procedure.

prediction_feature

The URI of the feature of the dataset that should be used as the target (dependent) variable while

training the model. This should not only be a valid URI but additionally be a feature of the dataset

and must be nominal.

 Response

Once the model is successfully created, its URI is returned to the client within the response and the

status is set to 200; otherwise an explanatory message is provided.

Status Codes

200

Success – The request has succeeded and a new model was generated. The URI of the model is

returned within the response body.

400

Bad Request – Some parameter you provided is wrong or you didn't post some mandatory parameter

such as the dataset_uri or/and the target. A list of errors and explanatory messages is returned within

the response.

404

The following message is returned to the client:

You have requested an algorithm which does not exist. You can get a complete list of all available

algorithms at opentox.ntua.gr:3000/algorithm

500

Internal Server Error – The parameters you posted are acceptable but some internal error occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it received

an unsuccessful response. In such a case, it seems that some other server is down.

503

The service is not available for the time being – Try again later!

http://opentox.ntua.gr/ds.rdf

Deliverable Report

 57

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application. Online CVSs are available at:

github.com/alphaville/yaqp-turbo

 Libraries used

The service uses the class NaiveBayes of Weka.

Examples

Example 1 – Training

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/9" -d

"prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/12136"

http://opentox.ntua.gr:3000/algorithm/naiveBayes

Example 2 – Use a naive Bayes model for prediction

Let http://opentox.ntua.gr:3000/model/x be a model produced by the above mentioned service. Then the

following command can be used to obtain predictions for a given dataset:

curl -X POST -d 'dataset_uri=http://abmit.uni-plovdiv.bg:8080/ambit2/dataset/9'

http://opentox.ntua.gr:3000/model/x

The dataset containing the predicted values is posted to an available dataset service (e.g. http://ambit.uni-

plocdiv.bg:8080/ambit2/dataset)

5.2.9 ToxTree (IDEA)

Toxtree is a full-featured and flexible user-friendly open source application, which is able to estimate toxic

hazard by applying a decision tree approach. Currently it includes the following modules:

1. Cramer rules

2. Verhaar scheme for predicting toxicity mode of actions

3. A decision tree for estimating skin irritation and corrosion potential.

4. A decision tree for estimating eye irritation and corrosion potential

5. A decision tree for estimating carcinogenicity and mutagenicity

Toxtree has been designed with flexible capabilities for future extensions in mind (e.g. other classification

schemes that could be developed at a future date). New decision trees with arbitrary rules can be built with the

help of a graphical user interface or by developing new plug-ins.

http://github.com/alphaville/yaqp-turbo

Deliverable Report

 58

General Information about the service

Service description

REST services, exposing Toxtree hazard estimation (toxtree.sourceforge.net/)

URI

 Cramer rules apps.ideaconsult.net:8180/ambit2/algorithm/toxtreecramer

 Extended Cramer rules apps.ideaconsult.net:8180/ambit2/algorithm/toxtreecramer2

 Eye irritation apps.ideaconsult.net:8180/ambit2/algorithm/toxtreeeye

 Skin irritation apps.ideaconsult.net:8180/ambit2/algorithm/toxtreeskinirritation/

 Structure Alerts for the in vivo micronucleus assay in rodents

apps.ideaconsult.net:8180/ambit2/algorithm/toxtreemic

 Michael Acceptors by Structural Alerts

apps.ideaconsult.net:8180/ambit2/algorithm/toxtreemichaelacceptors

 Benigni/Bossa rules for carcinogenicity and mutagenicity

apps.ideaconsult.net:8180/ambit2/algorithm/toxtreecarc

 ILSI/Kroes decision tree for TTC apps.ideaconsult.net:8180/ambit2/algorithm/toxtreekroes

OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

Relevant API: www.opentox.org/dev/apis/api-1.1/Model/

www.opentox.org/dev/apis/api-1.1/Task

Date completed

2009/12/21

Partner responsible for the implementation

IDEA

Contact within OT

jeliazkova.nina@gmail.com

Comments (including reviews)

Request/Response Information

Posted Parameters

None

Response

Returns Task URL (/task/{id}) or Model URL (/model/{id}) in HTTP Location header.

http://toxtree.sourceforge.net/
http://apps.ideaconsult.net:8180/ambit2/algorithm/toxtreecramer
http://apps.ideaconsult.net:8180/ambit2/algorithm/toxtreecramer2
http://apps.ideaconsult.net:8180/ambit2/algorithm/toxtreeeye
http://apps.ideaconsult.net:8180/ambit2/algorithm/toxtreeskinirritation
http://apps.ideaconsult.net:8180/ambit2/algorithm/toxtreemic
http://apps.ideaconsult.net:8180/ambit2/algorithm/toxtreemichaelacceptors
http://apps.ideaconsult.net:8180/ambit2/algorithm/toxtreecarc
http://apps.ideaconsult.net:8180/ambit2/algorithm/toxtreekroes
http://www.opentox.org/dev/apis/api-1.1/Algorithm
http://www.opentox.org/dev/apis/api-1.1/Model
http://www.opentox.org/dev/apis/api-1.1/Task

Deliverable Report

 59

Status Codes

200

Success – The request has succeeded and a new model was generated. The URI of the model is

returned in the HTTP Location: header.

202

Accepted – The request has been accepted, but model generation has not completed and a new model

was generated. The URI of the task is returned in the HTTP Location: header.

303

Redirected (See Other) – The model generation is running. Returns Task URI in the HTTP Location:

header.

404

Algorithm not found

http://www.opentox.org/dev/apis/api-1.1/Algorithm

500 Internal server error

Implementation Information

HTTP Method

POST

Programming Language

Java

ambit.svn.sourceforge.net/svnroot/ambit/trunk/ambit2-all/ambit2-www/src/main/java/ambit2/rest

Libraries used

Multiple (Ambit, Toxtree, The Chemistry Development Kit, Restlet among them)

Examples

Example 1 : Create Toxtree model “Extended Cramer rules “

curl -X POST http://apps.ideaconsult.net:8180/ambit2/algorithm/toxtreecramer2 -iv

* About to connect() to apps.ideaconsult.net port 8180 (#0)

* Trying 93.123.36.100... connected

* Connected to apps.ideaconsult.net (93.123.36.100) port 8180 (#0)

> POST /ambit2/algorithm/toxtreecramer2 HTTP/1.1

> User-Agent: curl/7.19.7 (amd64-portbld-freebsd8.0) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3

> Host: apps.ideaconsult.net:8180

> Accept: */*

>

< HTTP/1.1 303 See Other

https://ambit.svn.sourceforge.net/svnroot/ambit/trunk/ambit2-all/ambit2-www/src/main/java/ambit2/rest

Deliverable Report

 60

< Server: Apache-Coyote/1.1

< Date: Sun, 14 Feb 2010 19:19:03 GMT

< Location: http://apps.ideaconsult.net:8180/ambit2/task/dfbd5f05-22f8-4b0d-ba8e-

b55918c9be90

< Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept

< Accept-Ranges: bytes

< Server: Restlet-Framework/2.0m6

< Content-Length: 0

<

* Connection #0 to host apps.ideaconsult.net left intact

* Closing connection #0

Example 2

Retrieving model URL from task url

curl -X GET http://apps.ideaconsult.net:8180/ambit2/task/50f8ec54-0b21-434b-9661-

8387d0c7d584 -iv

* About to connect() to apps.ideaconsult.net port 8180 (#0)

* Trying 93.123.36.100... connected

* Connected to apps.ideaconsult.net (93.123.36.100) port 8180 (#0)

> GET /ambit2/task/50f8ec54-0b21-434b-9661-8387d0c7d584 HTTP/1.1

> User-Agent: curl/7.19.7 (amd64-portbld-freebsd8.0) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3

> Host: apps.ideaconsult.net:8180

> Accept: */*

>

< HTTP/1.1 303 See Other

< Server: Apache-Coyote/1.1

< Date: Sun, 14 Feb 2010 19:22:09 GMT

< Location: http://apps.ideaconsult.net:8180/ambit2/model/ToxTree%3A+Extended+Cramer+rules

< Accept-Ranges: bytes

< Server: Restlet-Framework/2.0m6

< Content-Length: 0

<

* Connection #0 to host apps.ideaconsult.net left intact

* Closing connection #0

Example 3. Using the model, created in Example 1 for prediction:

curl -H Accept:application/rdf+xml -X POST -d

dataset_uri=http://apps.ideaconsult.net:8180/ambit2/dataset/2?max=2

http://apps.ideaconsult.net:8180/ambit2/model/ToxTree%3A+Extended+Cramer+rules -iv

* About to connect() to apps.ideaconsult.net port 8180 (#0)

* Trying 93.123.36.100... connected

* Connected to apps.ideaconsult.net (93.123.36.100) port 8180 (#0)

> POST /ambit2/model/ToxTree%3A+Extended+Cramer+rules HTTP/1.1

> User-Agent: curl/7.19.7 (amd64-portbld-freebsd8.0) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3

> Host: apps.ideaconsult.net:8180

> Accept:application/rdf+xml

> Content-Length: 67

Deliverable Report

 61

> Content-Type: application/x-www-form-urlencoded

>

< HTTP/1.1 303 See Other

< Server: Apache-Coyote/1.1

< Date: Sun, 14 Feb 2010 19:26:17 GMT

< Location: http://apps.ideaconsult.net:8180/ambit2/task/e8973705-174a-48e8-94b2-09c7f644beb3

< Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept

< Accept-Ranges: bytes

< Server: Restlet-Framework/2.0m6

< Content-Length: 0

<

* Connection #0 to host apps.ideaconsult.net left intact

* Closing connection #0

5.2.10 PLS

One way to understand Partial-least squares regression (PLS) is that it simultaneously projects the x and y

variables onto the same subspace in such a way that there is a good relationship between the predictor and

response data. Another way to see PLS is that it forms “new” x variables as linear combinations of the old ones,

and subsequently uses these new linear combinations as predictors of y. Hence, as opposed to MLR PLS can

handle correlated variables, which are noisy and possibly also incomplete.

General Information about the service

 Service description

The PLS web service enables the user to build regression models for a specific dataset.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/PLSregression

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

2010 – February 09

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

kramer@in.tum.de

 Comments (including reviews)

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/PLSregression
http://www.opentox.org/dev/apis/api-1.1/Algorithm

Deliverable Report

 62

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri=ambit.uni-plovdiv.bg:8080/ambit2/dataset/39) which should be available in RDF

format. This is a mandatory parameter.

numComponents

The number of components to compute.

performPrediction

Whether to update the class attribute with the predicted value.

preprocessing

Sets the type of preprocessing to use.

replaceMissing

Whether to replace missing values.

 Response

A task URI is provided if the service tries to calculate a regression model. The task URI can be

queried (GET) for the resulting model URI. Otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

303

Redirect – the result can be found elsewhere.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the dataset_uri.

 404

The resource was not found – Check your spelling: http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/plsregression not identical to

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/PLSregression. For a

complete list of all available algorithms, check out http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you posted are acceptable but some internal error has

http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 63

occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down.

 503

The service is not available for the time being – Try again later!

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used

The service uses the WEKA software package.

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/23" -d

"prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/12818"

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/PLSregression

Example 2

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/158" -d

"numComponents=2" -d "prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/12818"

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/PLSregression

5.2.11 MaxTox (SL with JNU)

Published in 2006, Prakash and Ghosh elaborated the scope of the hypothesis that it may be possible

to find a set of common scaffold(s) from a diverse compound set which contribute significantly

(positively/negatively) towards biological activity. Our objective has been to extend this hypothesis to

derive a predictive toxicity score, based on the MCS (Maximum Common Substructure) score with

respect to clusters of compounds (based on toxicological endpoints).

The algorithm uses 2-D based QSAR to determine toxicity of molecules by comparing to a set of

known toxic molecules. The QSAR in this case consists of finding descriptors from the database of

toxic molecules using the maximum common substructure determination algorithm and then using

these descriptors to develop a predictive model for toxicity. The test molecule is fed to this predictive

model to get a score regarding its toxicity. At every level (mentioned below), the algorithm consists of

Deliverable Report

 64

two parts – screening and rigorous graph matching. The main function of screening is to eliminate

those molecules which are beyond some minimum similarity threshold (in terms of their graphs) so

that the computationally complex graph matching is optimized. The algorithm consists of the

following steps:

 Clustering of the molecules within this database based on toxicity endpoints (EP). Minimum

Common Substructure (MCS) fragments are generated based on the well-known clique detection

algorithm within each EP cluster.

 Comparing the query molecule to each cluster (EP based) and finding a fingerprint with respect to

MCS fragments found in each cluster (from pair-wise comparisons within the molecules

comprising the cluster)

 Using the fingerprint in a Machine Learning algorithm, to generate predictive models.

 Use the prediction model with the fingerprint of a new compound and predict a toxicity (classify) of

the compound.

In accordance with our initial use case. currently the functionality provided is prediction of a single

compound when posted to the model with a single parameter - the model number to use. In later

iterations of the software, fine-grained control will be provided which is necessary for use cases like

ToxPredict and leveraging other OpenTox APIs and data/structures.

General Information about the service

 Service description

The MaxTox service predicts a classification of a molecule (toxic / non-toxic – with relation to an

EP) based on the fingerprint comprising of the occurrence/non-occurrence of MCS fragments

found in pair-wise comparisons of molecules in an EP cluster.

 URI

http://opentox2.informatik.uni-freiburg.de:8080/MaxtoxTest/rest/model/{id}

List: opentox2.informatik.uni-freiburg.de:8080/MaxtoxTest/rest/model

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Model

 Date completed

Initial version completed in Feb. 2010.

 Partner responsible for the implementation

SL-JNU

 Contact within OT

mr.surajit.ray@gmail.com, indirag@mail.jnu.ac.in, sunil@seascapelearning.com

 Comments (including reviews)

http://opentox2.informatik.uni-freiburg.de:8080/MaxtoxTest/rest/model
http://www.opentox.org/dev/apis/api-1.1/Model
mailto:mr.surajit.ray@gmail.com
mailto:indirag@mail.jnu.ac.in

Deliverable Report

 65

Request/Response Information

 Posted Parameters

compound_uri

(e.g. compound_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/compound/100846) which should

be available in RDF format. This is a mandatory parameter.

 Response

A prediction task which when completed will provide a 0 (toxic) or 1(non-toxic) prediction for the

compound.

Status Codes

 200

Success – The request has succeeded and the prediction task has been generated.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the compound_uri.

 404

The resource was not found.

 500

Internal Server Error – The parameters you have posted are acceptable but some internal error has

occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down.

 503

The service is not available for the time being – Try again later!

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application inside an Apache Tomcat server.

 Libraries used

CDK , R , Rserve , Jena , Restlet, MySQLConnector-J

Deliverable Report

 66

Examples

Example 1

curl -X POST -d 'compound_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/compound/17611'

http://opentox2.informatik.uni-freiburg.de:8080/MaxtoxTest/model/1

5.3 Clustering algorithms

5.3.1 K-means clustering

k-means clustering is an algorithm to classify or to group your objects based on attributes/features into K

number of groups. K is a positive integer number. The grouping is achieved by minimizing the sum of squares

of distances between data and the corresponding cluster centroids.

General Information about the service

Service description

Simple k-means clustering

URI

apps.ideaconsult.net:8180/ambit2/algorithm/SimpleKMeans

OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

Date completed

2009/12/21

Partner responsible for the implementation

IDEA

Contact within OT

Jeliazkova.nina@gmail.com

Comments (including reviews)

Request/Response Information

Posted Parameters

dataset_uri

Response

Returns Task URL (/task/{id}) or Model URL (/model/{id}) in HTTP Location header.

http://apps.ideaconsult.net:8180/ambit2/algorithm/SimpleKMeans
http://www.opentox.org/dev/apis/api-1.1/Algorithm

Deliverable Report

 67

Status Codes

200

Success – The request has succeeded and a new model was generated. The URI of the model is

returned in the HTTP Location: header.

202

Accepted – The request has been accepted, but model generation has not completed and a new

model was generated. The URI of the task is returned in the HTTP Location: header.

303

Redirected (See Other) – The model generation is running. Returns Task URI in the HTTP Location:

header.

404

Algorithm not found

500

Internal server error

Implementation Information

HTTP Method

POST

Programming Language

Java

ambit.svn.sourceforge.net/svnroot/ambit/trunk/ambit2-all/ambit2-www/src/main/java/ambit2/rest

Libraries used

Multiple (Ambit, Weka, Restlet among them)

Examples

Example 1 Creating clustering model. Note features in the dataset are explicitly set and the dataset_uri

parameter value is URL encoded

curl -X POST -d

dataset_uri=http%3A%2F%2Fapps.ideaconsult.net%3A8180%2Fambit2%2Fdataset%2F7%3Ffeature_uris%5B%5D%3

Dhttp%3A%2F%2Fapps.ideaconsult.net%3A8180%2Fambit2%2Ffeature%2F20185%26feature_uris%5B%5D%3Dhttp

%3A%2F%2Fapps.ideaconsult.net%3A8180%2Fambit2%2Ffeature%2F20187%26feature_uris%5B%5D%3Dhttp%3A%

2F%2Fapps.ideaconsult.net%3A8180%2Fambit2%2Ffeature%2F20186%26feature_uris%5B%5D%3Dhttp%3A%2F%2

Fapps.ideaconsult.net%3A8180%2Fambit2%2Ffeature%2F20195

http://apps.ideaconsult.net:8180/ambit2/algorithm/SimpleKMeans -v

* About to connect() to apps.ideaconsult.net port 8180 (#0)

* Trying 93.123.36.100... connected

* Connected to apps.ideaconsult.net (93.123.36.100) port 8180 (#0)

https://ambit.svn.sourceforge.net/svnroot/ambit/trunk/ambit2-all/ambit2-www/src/main/java/ambit2/rest

Deliverable Report

 68

> POST /ambit2/algorithm/SimpleKMeans HTTP/1.1

> User-Agent: curl/7.19.7 (amd64-portbld-freebsd8.0) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3

> Host: apps.ideaconsult.net:8180

> Accept: */*

> Content-Length: 439

> Content-Type: application/x-www-form-urlencoded

>

< HTTP/1.1 303 See Other

< Server: Apache-Coyote/1.1

< Date: Mon, 15 Feb 2010 06:51:55 GMT

< Location: http://apps.ideaconsult.net:8180/ambit2/task/75adf3aa-d17e-48e8-bfa3-295743916336

< Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept

< Accept-Ranges: bytes

< Server: Restlet-Framework/2.0m6

< Content-Length: 0

<

* Connection #0 to host apps.ideaconsult.net left intact

* Closing connection #0

Example 2 Retrieving the model by Task URL, received in Example 1

curl -X GET http://apps.ideaconsult.net:8180/ambit2/task/75adf3aa-d17e-48e8-bfa3-

295743916336 -v

* About to connect() to apps.ideaconsult.net port 8180 (#0)

* Trying 93.123.36.100... connected

* Connected to apps.ideaconsult.net (93.123.36.100) port 8180 (#0)

> GET /ambit2/task/75adf3aa-d17e-48e8-bfa3-295743916336 HTTP/1.1

> User-Agent: curl/7.19.7 (amd64-portbld-freebsd8.0) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3

> Host: apps.ideaconsult.net:8180

> Accept:application/rdf+xml

>

< HTTP/1.1 303 See Other

< Server: Apache-Coyote/1.1

< Date: Mon, 15 Feb 2010 06:53:18 GMT

< Location: http://apps.ideaconsult.net:8180/ambit2/model/9

< Accept-Ranges: bytes

< Server: Restlet-Framework/2.0m6

< Content-Length: 0

<

* Connection #0 to host apps.ideaconsult.net left intact

* Closing connection #0

Deliverable Report

 69

5.4 Feature selection algorithms

5.4.1 Information Gain Attribute Evaluation

InfoGainAttributeEval evaluates the worth of an attribute by measuring the information gain with respect to the

class.

InfoGain(Class,Attribute) = H(Class) – H(Class | Attribute),

where H is the information entropy.

General Information about the service

 Service description

This service evaluates the worth of an attribute by measuring the information gain with respect to

the class.

 URI

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/InfoGainAttributeEval

 OpenTox API Reference

www.opentox.org/dev/apis/api-1.1/Algorithm

 Date completed

Initial version completed.

 Partner responsible for the implementation

Technische Universität München

 Contact within OT

kramer@in.tum.de

 Comments (including reviews)

Request/Response Information

 Posted Parameters

dataset_uri

(e.g. dataset_uri= ambit.uni-plovdiv.bg:8080/ambit2/dataset/39) which should be available in

RDF format. This is a mandatory parameter.

binarizeNumericAttributes

Just binarize numeric attributes instead of properly discretizing them.

missingMerge

Distribute counts for missing values. Counts are distributed across other values in proportion to

their frequency. Otherwise, missing is treated as a separate value.

numToSelect

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/InfoGainAttributeEval
http://www.opentox.org/dev/apis/api-1.1/Algorithm
mailto:kramer@in.tum.de
http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/39

Deliverable Report

 70

Specify the number of attributes to retain. The default value (-1) indicates that all attributes are to

be retained. Use either this option or a threshold to reduce the attribute set.

startSet

Specify a set of attributes to ignore. When generating the ranking, Ranker will not evaluate the

attributes in this list. This is specified as a comma-separated list of attribute indexes starting at 1.

It can include ranges e.g. 1,2,5-9,17.

threshold

Set threshold by which attributes can be discarded. Default value results in no attributes being

discarded. Use either this option or numToSelect to reduce the attribute set.

 Response

Once the features for a dataset are selected successfully, dataset URI is returned to the client with

the selected features and the status is set to 200; otherwise an explanatory message is provided.

Status Codes

 200

Success – The request has succeeded and the requested features were generated. The URI of the

dataset is returned within the response body.

 400

Bad Request – Some parameter you provided is wrong or you did not post some mandatory

parameter such as the dataset_uri.

 404

The resource was not found – Check your spelling: http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/infogainattributeeval is not identical to

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/InfoGainAttributEval. For

a complete list of all available algorithms, check out http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/

 500

Internal Server Error – The parameters you posted are acceptable but some internal error occurred.

502

Bad Gateway – The service was unsuccessful because while the server was acting as a client, it

received an unsuccessful response. In such a case, it seems that some other server is down.

 503

The service is not available for the time being – Try again later!

Deliverable Report

 71

Implementation Information

 HTTP Method

POST

 Programming Language

The project was built in Java and runs as a standalone application.

 Libraries used

The service uses the class InfoGainAttributeEval which is included in WEKA (version 3.6.0).

Examples

Example 1

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/158" -d

"prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/29634"

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/InfoGainAttributeEval

Example 2

curl -X POST -d "dataset_uri=http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/23" -d

"prediction_feature=http://ambit.uni-plovdiv.bg:8080/ambit2/feature/12818"

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/InfoGainAttributeEval

Deliverable Report

 72

6. Conclusions

This document summarizes the work that has been accomplished within the OpenTox Framework regarding

the development of the initial prototype of QSAR algorithms. A key decision towards this implementation was

the adoption of the REST architectural style, because it is suitable for achieving three important goals:

independent deployment of components, ease of standardised communication between components and

generality of interfaces. These advantages will enable the development and integration of additional algorithms

in the future, which may be offered not only by OpenTox partners but by third-party developers as well.

Ongoing maintenance and addition of novel predictive algorithms relevant to predictive toxicology will

contribute to the long-term sustainability of OpenTox in generating valuable resources for the user scientific

community.

A significant amount of time was invested by the developers in the design of the OpenTox Framework to create

an extensible, interoperable, well-engineered computing platform for predictive toxicology, which is currently

absent but sorely needed to address current and future industry and regulatory needs, and to advance the

safety assessment of products to ensure human health. The project is ahead of schedule regarding individual

implementation of algorithms, since more algorithms than initially planned have already been prototyped. In

particular, many descriptor calculation algorithms and QSAR modeling methods have already been

implemented and incorporated within OpenTox. These include methods provided by OpenTox partners and

algorithms contained in other state-of-the-art projects such as WEKA and CDK. Descriptor calculation

algorithms are able to generate both physico-chemical and sub-structural descriptors. QSAR modeling

methods cover a wide range of approaches and address many user model building requirements, since they

include regression and classification algorithms, eager and lazy approaches, and algorithms producing more

easily interpretable and understandable models. The initial prototype also includes implementations of

clustering algorithms and feature selection tools.

Continuing effort will be carried out by all OpenTox partners to meet current academic and industry challenges

regarding interoperability of software components and integration of algorithm and model services within the

context of tested use cases. The experience we have gained during this work will help speed up the

development process towards this direction. The approach to interoperability and standards lays a solid

foundation to extend application development within the broader developer community to establish computing

capabilities that are sorely missing in the field of predictive toxicology today, and which are holding back

advances in both R&D and the application of R&D project outcomes to meet industry and regulatory needs.

Deliverable Report

 73

7. Appendix. Algorithm Type Ontology

