

Deliverable D2.3

Prototype Demonstration

Server

Grant Agreement Health-F5-2008-200787

Acronym OpenTox

Name An Open Source Predictive Toxicology Framework

Coordinator Douglas Connect

Deliverable Report

 2

Contract No. Health-F5-2008-200787

Document Type: Deliverable Report

WP/Task: WP2

Name Prototype Demonstration Server

Document ID: OpenTox Deliverable Report 2.3

Date: Sept 30, 2010

Status: Final Version

Organisation: Technische Universität München (TUM)

Contributors Stefan Kramer (SK)

Tobias Girschick (TG)

Fabian Buchwald (FB)

Vedrin Jeliazkov (VJ)

Martin Gütlein (MG)

Jörg Wicker (JW)

Nina Jeliazkova (NJ)

Barry Hardy (DC)

TUM

TUM

TUM

IDEA

ALU

TUM

IDEA

DC

Distribution: Public

Purpose of Document: To disseminate results on the initial OpenTox Prototype

Document History: 1 – First version of report (SK, FB, TG) on Aug 16

2 – Reviewed and edited by VJ on Aug 24, 2010

3 – Chapter six first version by TG on Aug 27, 2010

4 – Created 3.3 (ALU technical realization)

5 – Added Taverna section; TG and JW; Aug 31, 2010

6 – NJ added section 4.4; Aug 31, 2010

7- BH (DC) reviewed and edited final version

Deliverable Report

 3

Table of Contents

Acknowledgements .. 4

Summary .. 5

1. Introduction ... 6

2. System overview .. 7

3. Technical Realization .. 7

3.1 Services at TUM ... 8

3.2 Services at IDEA .. 8

3.3 Services at ALU .. 8

4. Service Examples .. 9

4.1 cURL as a Quick-check Tool .. 9

4.2 Dataset Querying and Merging.. 9

4.3 Model Learning Example ... 10

4.4 Registration of a Service at the Ontology Service .. 12

5. Example Applications.. 12

5.1 ToxPredict ... 13

5.2 ToxCreate ... 15

5.3 Connecting OpenTox Services with Taverna ... 16

6. Conclusions .. 18

7. References.. 18

Appendix A – Example Java Resource ... 20

Appendix B – Taverna OpenTox Workflow .. 22

Deliverable Report

 4

Acknowledgements

Research Funding

OpenTox - An Open Source Predictive Toxicology Framework, www.opentox.org, is funded

under the EU Seventh Framework Program: HEALTH-2007-1.3-3 Promotion, development,

validation, acceptance and implementation of QSARs (Quantitative Structure-Activity

Relationships) for toxicology, Project Reference Number Health-F5-2008-200787 (2008-

2011).

Project Partners

Douglas Connect (DC), In Silico Toxicology (IST), Ideaconsult (IDEA), Istituto Superiore di

Sanita' (ISS), Technical University of Munich (TUM), Albert Ludwigs University Freiburg (ALU),

National Technical University of Athens (NTUA), David Gallagher (DG), Institute of Biomedical

Chemistry of the Russian Academy of Medical Sciences (IBMC), Seascape Learning (SL),

Jawaharlal Nehru University (JNU), Fraunhofer Institute for Toxicology & Experimental Medicine

(ITEM).

Advisory Board

European Centre for the Validation of Alternative Methods, European Joint Research Centre,

U.S Environmental Protection Agency, U.S. Food & Drug Administration, Nestlé, Roche,

AstraZeneca, Lhasa, Leadscope, University of North Carolina, Pharmatrope, Bioclipse, EC

Environment Directorate General, Organisation for Economic Co-operation & Development,

CADASTER, Bayer Healthcare.

Correspondence

Dr. Barry Hardy, OpenTox Project Coordinator and Director, Community of Practice & Research

Activities, Douglas Connect, Baermeggenweg 14, 4314 Zeiningen, Switzerland

Email: barry.hardy –(at)- douglasconnect.com

http://www.opentox.org/

Deliverable Report

 5

Summary

OpenTox provides an interoperable, standards-based framework for the support of

predictive toxicology data management, algorithms, modelling, validation and reporting.

OpenTox provides end-user oriented tools to non-computational specialists, risk

assessors, and toxicological experts in addition to Application Programming Interfaces

(APIs) for developers of new applications.

OpenTox includes services for compounds, datasets, features, algorithms, models,

ontologies, tasks, validation, and reporting which may be combined into multiple

applications satisfying a variety of different user needs. OpenTox applications are based

on a set of distributed, interoperable OpenTox API-compliant REST web services. The

services are operated on a network of publicly accessible prototype demonstration servers

that are distributed over multiple locations and organisations. Every provider responsible

for service contributions has a server running that contributes to the distributed OpenTox

system. In this report we take a closer look at three example server implementations to

describe the whole distributed prototype system. The report also provides insight into the

technical details, e.g., what programming languages and technologies have been used. It

provides example usages of the distributed system, so that potential contributors to the

system have a key overview guidance at their hands that will, in addition to further online

information on the OpenTox web resources (www.opentox.org), enable easy access to the

system itself and make contributions easier.

Two initial OpenTox applications were prototyped as an illustration of the potential

impact of OpenTox for high-quality and consistent structure-activity relationship

modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on

toxicities for endpoints for an input chemical structure, and ToxCreate which builds and

validates a predictive toxicity model based on an input toxicology dataset. Because of the

extensible nature of the standardised framework design, barriers of interoperability

between applications and content are removed, as the user may combine data, models and

validation from multiple sources in a dependable and time-effective way.

Taverna (www.taverna.org.uk) has been used to provide a user friendly workflow

system to access and combine OpenTox web services. It provides a user interface which

can be used to generate arbitrary workflows from combinations of single OpenTox web

services. The web services are combined by importing single web services and connecting

their inputs and outputs using a point-and-click user interface.

Continuing effort will be carried out by OpenTox developers to meet current

academic and industry challenges regarding interoperability of software components and

integration of data, algorithm and model services within the context of tested Use Cases.

The experience we have gained during this work should help speed up the development

process towards this direction.

http://www.opentox.org/
http://www.taverna.org.uk/

Deliverable Report

 6

1. Introduction

Basic OpenTox [HAR10] design principles are the interoperability, flexibility and

extensibility of the produced software. To comply with those principles, we decided to use

the REST-based [FIE00] web service technology for the OpenTox framework component

implementation. The REST web service technology is a young, lightweight, emerging

technology. It has been adopted by internet industry giants Google and Amazon who both

provide REST Application Programming Interfaces (APIs) to access services. Furthermore,

OpenTox partners decided to initially build a distributed system of web services to achieve

maximum flexibility and extensibility. As a consequence, there is no such thing as one

public prototype demonstration server for OpenTox, but the concept is a network of

publicly accessible prototype demonstration servers that are distributed over the partner

locations. Basically, every provider responsible for service contributions has a server

running that contributes to the distributed OpenTox system. In this document we take a

closer look at three (IDEA, ALU and TUM) example server implementations to describe the

whole distributed prototype system. The three servers are sufficient to explain the

conceptual functionality and interactions of the prototype system as they together

Figure 1 Map of distributed OpenTox servers

implement all components of the OpenTox API. Other up and running servers are hosted

by NTUA, JNU and IST.

The document also provides insight into the technical details, e.g., what programming

languages and technologies have been used. It provides example usages of the distributed

system, so that potential contributors to the system have an overview guidance at their

Deliverable Report

 7

hands that will, in addition to further online information on the OpenTox web resources

(www.opentox.org), enable easy access to the system itself and make contributions easier.

2. System overview

Prototype implementation of the OpenTox framework consists of different distributed

components or servers that interact and work together in a REST-based web service

environment. In this report focus on the three servers of IDEA, TUM and ALU that are

sufficient to explain the conceptual functionality of the OpenTox framework prototype

system; others of note include the servers of NTUA and IST. The three servers focused on

include all components of the OpenTox API as well as implementations based on different

technical concepts and programming languages. IDEA's server that is located at ambit.uni-

plovdiv.bg:8080/ambit2 or apps.ideaconsult.net:8080/ambit2 is primarily a compound or

dataset server that provides unified access to compounds, features including endpoints

and complete datasets. Besides this, in silico alert methods based on Toxtree are provided.

TUM's server (opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/) provides

different algorithms, ranging from descriptor generation and descriptor selection to

standard machine learning and data mining algorithms. Also provided are several methods

that are implemented particularly for the needs of toxicology predictions, QSAR model

learning or descriptor generation, e.g., FMiner [MAU10], FCDE [BUC10], Toxtree [PAT08]

and lazar [HEL06]. Using IDEA's and TUM's server, the retrieval of chemical information,

descriptor generation, descriptor selection, model learning and model application is

possible. For validating a model and for the generation of a report of predictions,

communications with ALU's server (opentox.informatik.uni-freiburg.de), which provides

standard validation routines and reporting tools, is necessary. Other OpenTox servers

provide additional data and methods, i.e. additional complexity in the form of QSAR or

data mining algorithms: NTUA (opentox.ntua.gr), JNU/SL (opentox2.informatik.uni-

freiburg.de:8080/MaxtoxTest) and IST (webservices.in-silico.ch).

3. Technical Realization

The selection of the REST-based distributed web service architecture enables the flexible

integration of existing tools that are available in different programming languages as well

as on different platforms. Consequently, the technical realization of a new web service is

possible in the programming language of choice, so long as REST interfaces are available.

Currently Java (java.sun.com) and Ruby (www.ruby-lang.org/en/) are the main languages

used. We provide an overview here of three example servers.

http://www.opentox.org/
http://ambit.uni-plovdiv.bg:8080/ambit2
http://ambit.uni-plovdiv.bg:8080/ambit2
http://apps.ideaconsult.net:8080/ambit2
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/
http://opentox.informatik.uni-freiburg.de/
https://opentox.ntua.gr/
http://opentox2.informatik.uni-freiburg.de:8080/MaxtoxTest
http://opentox2.informatik.uni-freiburg.de:8080/MaxtoxTest
http://webservices.in-silico.ch/
http://java.sun.com/
http://www.ruby-lang.org/en/

Deliverable Report

 8

3.1 Services at TUM

The TUM services are all implemented in the Java programming language and can be tested

with a stand-alone Java server or in a Java servlet container. A java example for TUM‟s

implementation of a regression algorithm is provided in Appendix A. The production

environment is an Apache Tomcat servlet container. TUM developers also have used the

resin web-container as an alternative to the Tomcat server. Basically every Java servlet

container should be usable. Only some underlying non-Java software remains in native

code, e.g. the Free Tree Miner software remains in C++ code that is called from within

Java. This means that old code is reusable very quickly and must not be transferred or re-

implemented. To avoid redundant and time-consuming calculations with frequency-based

descriptor calculation algorithms, the TUM service checks, whether FTM or gSpan

calculations have already been done before, by saving algorithm configurations into a

database. This is either an SQLite database, if no PostgreSQL is installed on the server, or a

PostgreSQL database. For providing the REST-based web service functionality the TUM

service uses Java restlet classes (www.restlet.org). For the ontology-related parts of the

code (RDF/OWL) the service uses the JENA java packages (jena.sourceforge.net).

3.2 Services at IDEA

IDEA‟s web services are also implemented in the Java programming language and can be

run in any servlet container. Two independent instances have been deployed and tested in

Apache Tomcat (tomcat.apache.org) version 6.0.29:

 Development instance (ambit.uni-plovdiv.bg:8080/ambit2/ ambit.uni-

plovdiv.bg:8082/ontology/), running on Linux ambit 2.6.26-2-amd64 #1 SMP Sun

Jun 20 20:16:30 UTC 2010 x86_64 GNU/Linux

 Production instance (apps.ideaconsult.net:8080/ambit2/

apps.ideaconsult.net:8080/ontology/), running on FreeBSD eos.ideaconsult.net 8.0-

RELEASE-p3 FreeBSD 8.0-RELEASE-p3 #0: Wed Jun 2 23:56:19 EEST 2010

root@eos.ideaconsult.net:/usr/obj/usr/src/sys/EOS amd64

 MySQL (www.mysql.com) is used as a database backend. Continuous availability and

performance monitoring of the production instance is performed with statistics

available online at ambit.uni-plovdiv.bg/cgi-bin/smokeping.cgi?target=IDEA

3.3 Services at ALU

The services from ALU are implemented with the Ruby programming language, based on

the web application framework Sinatra (www.sinatrarb.com). The current validation web

service runs with an Apache HTTP web server (httpd.apache.org). Various other web

http://www.restlet.org/
http://jena.sourceforge.net/
http://tomcat.apache.org/
http://ambit.uni-plovdiv.bg:8080/ambit2/
http://ambit.uni-plovdiv.bg:8082/ontology/
http://ambit.uni-plovdiv.bg:8082/ontology/
http://apps.ideaconsult.net:8080/ambit2/
http://apps.ideaconsult.net:8080/ontology/
http://www.mysql.com/
http://ambit.uni-plovdiv.bg/cgi-bin/smokeping.cgi?target=IDEA
http://www.sinatrarb.com/
http://httpd.apache.org/

Deliverable Report

 9

servers such as nginx (nginx.org) and Thin (code.macournoyer.com/thin/) have been

successfully tested during development.

ALU and IST develop a ruby library (github.com/mguetlein/opentox-ruby-api-wrapper) to

simplify access to different OpenTox web resources via Ruby objects.

A MySQL database server is used to store data. Further software used by the validation

reporting services is Gnuplot (www.gnuplot.info) and Saxon

(wiki.docbook.org/topic/Saxon).

To guarantee an easy installation of all necessary components, ALU and IST offer a

complete appliance that can be run in Oracle (formerly SUN) VirtualBox

(wiki.github.com/helma/opentox-documentation/installation-of-opentox-webservices).

4. Service Examples

This section gives examples of the prototype system‟s functionality using cURL command

line calls and code examples.

4.1 cURL as a Quick-check Tool

A lot of quick checks and examples in the OpenTox community use the open software tool

cURL (curl.haxx.se). cURL is a command line tool for transferring data with URL syntax,

supporting FTP, FTPS, HTTP, HTTPS and many other protocols as well as HTTP form based

upload, proxies, cookies, user+password authentication (Basic, Digest, NTLM, Negotiate,

kerberos...) and a lot of other useful tricks. All offered web services in the OpenTox

framework can be addressed with cURL so examples in this document and in the API

(opentox.org/dev/apis) are often given with cURL calls.

4.2 Dataset Querying and Merging

In this example we show how to query for a dataset and how to merge different sources of

mutagenicity data into one dataset. The first dataset is a benchmark dataset for in silico

prediction of Ames mutagenicity. Its URI is

apps.ideaconsult.net:8080/ambit2/dataset/2344. Meta-information on the dataset can be

retrieved via apps.ideaconsult.net:8080/ambit2/dataset/2344/metadata. The easiest way

to access the addresses is to copy and paste the URLs to the address field of a web

browser. If the activity column (apps.ideaconsult.net:8080/ambit2/feature/28958) is

selected, we get information on the selected feature. Now the question we ask in this

example is: Is there other mutagenicity data available that one can use?

This can either be done via the given link in the “Same as” column of the activity feature

that initiates a search for data with the same EChA endpoint (in this case mutagenicity), or

http://nginx.org/
http://code.macournoyer.com/thin/
http://github.com/mguetlein/opentox-ruby-api-wrapper
http://www.gnuplot.info/
http://wiki.docbook.org/topic/Saxon
http://wiki.github.com/helma/opentox-documentation/installation-of-opentox-webservices
http://curl.haxx.se/
http://opentox.org/dev/apis
http://apps.ideaconsult.net:8080/ambit2/dataset/2344
http://apps.ideaconsult.net:8080/ambit2/dataset/2344/metadata
http://apps.ideaconsult.net:8080/ambit2/feature/28958

Deliverable Report

 10

directly via a URL that represents the search (mark that special characters in the search

parameter sameas have to be replaced):

http://apps.ideaconsult.net:8080/ambit2/feature?sameas=http%3A%2F%2Fwww.opentox.o

rg%2FechaEndpoints.owl%23Mutagenicity

Now merging the information of the different mutagenicity datasets is done by just

plugging together the relevant feature URIs and the dataset URI in the following way:

http://apps.ideaconsult.net:8080/ambit2/dataset/2344?feature_uris[]=http://apps.ideaco

nsult.net:8080/ambit2/feature/28958&feature_uris[]=http://apps.ideaconsult.net:8080/a

mbit2/feature/21611&feature_uris[]=http://apps.ideaconsult.net:8080/ambit2/feature/26

221&feature_uris[]=http://apps.ideaconsult.net:8080/ambit2/feature/21590

More information on this topic can be found in the OpenTox API documentation.

4.3 Model Learning Example

The first building block for model learning, i.e. creating a QSAR model that later on can be

used for prediction, is a dataset to train the model. Datasets can either be uploaded via a

web form or via HTTP POST to the dataset service. Various formats suitable for molecular

data such as SDF, CSV, SMI, MOL, and others are allowed. Alternatively, existing datasets

can be used. A second building block is the descriptor/feature calculation. Before you start

with learning the model, you can apply feature selection to reduce the dimensionality of

your learning problem. The next building block is the actual training of the model. The

model can then be used for making predictions. One can also make the model available for

the ontology service and search.

For the model learning example we use the Caco-2 dataset

(apps.ideaconsult.net:8080/ambit2/dataset/54) that has gastrointestinal absorption as

endpoint. The endpoint feature has apps.ideaconsult.net:8080/ambit2/feature/22200 as

identifying URI. For this dataset, we now calculate some additional descriptors (e.g.

AcidicGroups, BasicGroups as a small example selection) that are provided in the JOELib2

package hosted as a web service at TUM. The cURL command line call to do this is the

following:

curl -X POST -d 'dataset_uri=http://apps.ideaconsult.net:8080/ambit2/dataset/54' -d

'ALL=false' -d 'AcidicGroups=true' -d 'BasicGroups=true' http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/JOELIB2PhysChem

The system immediately returns a URI. For long running calculations this is a task URI (e.g.,

opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/task/9f9ce51a-1a3e-4151-

aaec-7beb8c70c38d) that can be queried for the status of the submitted calculations (e.g.,

in the web browser). As soon as the calculations are done you can follow the task URI link

to the result URI, which is in this case a dataset URI

(apps.ideaconsult.net:8080/ambit2/dataset/2628). Tasks that are completed are removed

http://apps.ideaconsult.net:8080/ambit2/feature?sameas=http%3A%2F%2Fwww.opentox.org%2FechaEndpoints.owl%23Mutagenicity
http://apps.ideaconsult.net:8080/ambit2/feature?sameas=http%3A%2F%2Fwww.opentox.org%2FechaEndpoints.owl%23Mutagenicity
http://apps.ideaconsult.net:8080/ambit2/dataset/2344?feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/28958&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/21611&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/26221&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/21590
http://apps.ideaconsult.net:8080/ambit2/dataset/2344?feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/28958&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/21611&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/26221&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/21590
http://apps.ideaconsult.net:8080/ambit2/dataset/2344?feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/28958&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/21611&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/26221&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/21590
http://apps.ideaconsult.net:8080/ambit2/dataset/2344?feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/28958&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/21611&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/26221&feature_uris%5b%5d=http://apps.ideaconsult.net:8080/ambit2/feature/21590
http://apps.ideaconsult.net:8080/ambit2/dataset/54
http://apps.ideaconsult.net:8080/ambit2/feature/22200
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/task/9f9ce51a-1a3e-4151-aaec-7beb8c70c38d
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/task/9f9ce51a-1a3e-4151-aaec-7beb8c70c38d
http://apps.ideaconsult.net:8080/ambit2/dataset/2628

Deliverable Report

 11

from the system after some time (at TUM this is two hours). In this example we will

perform no feature selection. The next step in the workflow is the model creation. We will

use the Gaussian Process Regression algorithm provided as a service at the TUM service to

learn the model. The corresponding cURL command is:

curl –X POST –d

„dataset_uri=http://apps.ideaconsult.net:8080/ambit2/dataset/2628‟ –d

„prediction_feature=http://apps.ideaconsult.net:8080/ambit2/feature/22200‟

http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP

The result again is a task URI. When the learning task is finished, model URI

(opentox.informatik.tu-muenchen.de:8080/OpenTox-

dev/model/TUMOpenToxModel_GaussP_1) is given as a result. This model URI can then be

used to predict the gastrointestinal absorption for new compounds. To investigate the

performance and accuracy of the trained model you can use the validation service at ALU.

An example call for a ten-fold cross-validation is:

curl –X POST -d algorithm_uri="http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/GaussP" -d

dataset_uri="http://apps.ideaconsult.net:8080/ambit2/dataset/2628" -d

prediction_feature="http://apps.ideaconsult.net:8080/ambit2/feature/22200" -d

num_folds=10 -d random_seed=1 -d stratified=false

http://opentox.informatik.uni-freiburg.de/validation/crossvalidation

This call invokes the model building process – as described above - 10 times on different

subsets of the dataset. Each time, the remaining (test) fold of the particular data subset is

predicted by the model. A crossvalidation resource URI is returned (alike to

opentox.informatik.uni-freiburg.de/validation/crossvalidation/123). This resource

contains the statistics, computed from the validation service by comparing the prediction

results to the actual values in the dataset.

A crossvalidation report presents the results in a nice, human readable format. It can be

created with the following curl call, which returns a crossvalidation report URI that can be

viewed with a web browser:

curl -X POST -d validation_uris="http://opentox.informatik.uni-

freiburg.de/validation/crossvalidation/123" http://opentox.informatik.uni-

freiburg.de/validation/report/crossvalidation

To predict the gastrointestinal absorption for new compounds the prediction services need

the same descriptors in the input dataset as the ones used for creating the model. If you

know the descriptors used you can calculate them as in the descriptor calculation step. If

http://apps.ideaconsult.net:8080/ambit2/dataset/2628
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/model/TUMOpenToxModel_GaussP_1
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/model/TUMOpenToxModel_GaussP_1
http://opentox.informatik.uni-freiburg.de/validation/crossvalidation/123
http://opentox.informatik.uni-freiburg.de/validation/report/crossvalidation
http://opentox.informatik.uni-freiburg.de/validation/report/crossvalidation

Deliverable Report

 12

not, you can use the super-service provided by IDEA

(apps.ideaconsult.net:8080/ambit2/algorithm/superservice).

4.4 Registration of a Service at the Ontology Service

The Ontology service provides RDF storage and SPARQL search functionality for objects,

defined by OpenTox services and relevant ontologies (Algorithm types, Blue Obelisk

algorithms dictionary, EChA endpoints ontology and others). The query interface is a

SPARQL endpoint and compliant with www.w3.org/TR/rdf-sparql-protocol/#query-

bindings-http. Services are registered into the Ontology service by POSTing the URL of the

service. The Ontology service retrieves RDF/XML from the URL and adds the triples into the

RDF storage.

curl -X POST -d “uri=http://opentox.informatik.tu-muenchen.de:8080/OpenTox-

dev/algorithm/GaussP” http://apps.ideaconsult.net:8080/ontology

Any OpenTox service, supporting the “application/rdf+xml” mime type can be registered

via the above command. Services can be deleted by the HTTP DELETE command. This will

remove all triples, associated with the URI specified.

curl -X DELETE -d “uri=http://opentox.informatik.tu-muenchen.de:8080/OpenTox-

dev/algorithm/GaussP” http://apps.ideaconsult.net:8080/ontology

The current implementation of the Ontology service is based on Jena with file storage (TDB

openjena.org/TDB/). Future implementations could be based on technologies, providing

better performance, e.g. Jena with database backend or high performance triple storages

such as Virtuoso (ods.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF) or Sesame

(www.openrdf.org/). Future work also may provide solutions for time limited registration

of services, as well as assignment of metadata, reflecting the status of registered models

(e.g. experimental or validated and ready to be used).

5. Example Applications

ToxPredict (toxpredict.org) estimates the chemical hazard of chemical structures. It

currently relies on OpenTox API-v1.1 compliant RESTful web services. The ToxCreate

(toxcreate.org) sister application allows more advanced users to train new OpenTox

models. Explanatory YouTube screencasts have been available for both applications. The

ToxPredict screencast (6:06 mins) is available in 360p, 480p and 720p (High Definition)

resolutions at: www.youtube.com/watch?v=H7gkNBz4Lwo. The ToxCreate screencast (5:52

mins) is available in 360p, 480p and 720p (High Definition) resolutions at:

www.youtube.com/watch?v=JRIl_XbibMA.

http://apps.ideaconsult.net:8080/ambit2/algorithm/superservice
http://www.w3.org/TR/rdf-sparql-protocol/#query-bindings-http
http://www.w3.org/TR/rdf-sparql-protocol/#query-bindings-http
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP
http://apps.ideaconsult.net:8080/ontology
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP
http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP
http://apps.ideaconsult.net:8080/ontology
http://openjena.org/TDB/
http://ods.openlinksw.com/dataspace/dav/wiki/Main/VOSRDF
http://www.openrdf.org/
http://toxpredict.org/
http://toxcreate.org/
http://www.youtube.com/watch?v=H7gkNBz4Lwo
http://www.youtube.com/watch?v=JRIl_XbibMA

Deliverable Report

 13

5.1 ToxPredict

To estimate the hazard of a chemical structure, ToxPredict users can either search the

OpenTox prototype database, which currently includes quality labeled data for thousands

of REACH-relevant chemicals, grouped in datasets, or can upload their own chemical

structure data. ToxPredict provides access to a number of ready-to-use models,

addressing various endpoints.

ToxPredict‟s Graphical User Interface (GUI) includes three main areas: a) a navigation bar

at the top of the screen, which enables users to find their way through the application

workflow; b) the navigation bar is followed by a short contextual help section, providing

specific details for the current step being executed; and c) an input/output section for

specifying queries and displaying results situated at the bottom of the screen.

Figure 2 ToxPredict GUI: Step 1 - Enter/select a chemical compound

In the first step of the ToxPredict workflow shown in Figure 2, you are invited to select the

structure(s) for which you would like to apply some OpenTox model(s). Once you have

entered your query string, chemical structure drawing or file name for upload, pressing the

NEXT button will continue the ToxPredict workflow to the next step.

Deliverable Report

 14

In the second step shown in Figure 3, you can browse the list of chemicals, which have

been found to correspond to the query defined in the first step. The structure of the

chemicals can be seen on the left hand side of the screen and some further metadata such

as CAS registry number, EINECS number, IUPAC name, synonyms and quality label are

shown on the right. In case that you are satisfied with this list you can proceed to the

following step, otherwise you could go back to the first step of the workflow and define a

different query.

Figure 3 ToxPredict GUI: Step 2 Display selected/found structures

The following step lists the available OpenTox models that can be selected for estimating

various properties for each of the query chemicals along with the corresponding

endpoints. It is also possible to select all available models at once.

In the next step the selected models are applied to all query chemicals and you can follow

the processing progress, which is refreshed automatically every 30 seconds. After the

processing has been completed, you can go to the last step of the ToxPredict workflow to

get the detailed results for the selected models and compounds, displayed on a web page

and also available for download as a SDF file, which is convenient for further automatic

processing. An example results page is shown in Figure 4.

Deliverable Report

 15

Figure 4 ToxPredict GUI: Final Step - Display toxicity data and prediction results

5.2 ToxCreate

The first version of ToxCreate (toxcreate.org) creates lazar classification models from user

uploaded datasets; additional model building algorithms are planned to follow in

subsequent versions.

The first step involves the input of data for model building as illustrated in Figure 5. The

input file should contain two columns, separated by a comma. The first column is reserved

for the chemical structure in SMILES format, while in the second column the user should

specify the activity classification (1: active, 0: inactive). An example input file is available

for download at toxcreate.org/hamster_carcinogenicity.csv. Input files can also be created

with MS Excel: Create a sheet with two columns and export them as a CSV (comma

delimited) file with the "Save As" option from the menu, selecting the CSV format.

After submitting a dataset to ToxCreate, an endpoint name, e.g., EPA Fathead Minnow

(EPAFHM) acute toxicity, should be assigned before proceeding with the file upload and

creating the model. This can take a while, depending on the dataset size and the current

load on the service. The Inspect page is refreshed every 15 seconds to update the model

status. Once the model building is completed, you can go to the Predict page and apply the

newly created model to predict the EPAFHM endpoint for some chemicals, identified by

structure diagram drawing, name, InChI, CAS, SMILES or one of the further possibilities

http://toxcreate.org/
http://toxcreate.org/hamster_carcinogenicity.csv

Deliverable Report

 16

offered. One or more prediction models have to be selected. Example results are shown in

Figure 6.

Figure 5 ToxCreate GUI:Initial Step – Input data

5.3 Connecting OpenTox Services with Taverna

Taverna (www.taverna.org.uk) provides a workflow system to access and combine web

services. It provides a user interface which can be used to generate arbitrary workflows

from combinations of single web services. The web services are combined by importing

single web services and connecting their inputs and outputs using a point-and-click GUI.

The GUI makes it a candidate application for users with little programming knowledge to

create their own workflows.

To show that the OpenTox API and web services can be combined with the Taverna

workflow system, some basic workflows were developed, which can be combined to create

more complex workflows. These workflows have been made available through the

myexperiment web site at www.myexperiment.org/groups/247.html. They are BeanShell

scripts (www.beanshell.org) which use basic Java functionality to access the OpenTox web

services via HTTP.

http://www.taverna.org.uk/
http://www.myexperiment.org/groups/247.html
http://www.beanshell.org/

Deliverable Report

 17

Figure 6 ToxCreate GUI: Display model prediction results

Using the myexperiment platform, the workflows can be shared and discussed with others.

They are also available for download and can then be imported into Taverna using the

import of a "Nested workflow" functionality. The nested workflow has input and output

ports. Each input can be connected to an output and vice-versa, enabling complex

workflows to be generated step by step. An example complex workflow is uploaded to

myexperiment and available at www.myexperiment.org/workflows/1119.html; screenshots

of the workflow are provided in Appendix B. When running the workflow, the user is asked

for a test set, a training set and a target attribute. In the example workflow, the datasets

are uploaded to the IDEA ambit data web services before a model is learned using a TUM

web service. Finally, the model is used to predict the target attribute of the test set and the

URL of the resulting test set with the target attribute is returned.

http://www.myexperiment.org/workflows/1119.html

Deliverable Report

 18

6. Conclusions

This report provides an overview on the status and capabilities of the OpenTox prototype

system, designed and developed in the first two years of the project. The OpenTox

prototype relies on a distributed REST-based web service architecture with services

distributed over multiple sites and organisations. The ToxPredict and ToxCreate

applications and the Taverna workflow integration examples show the flexibility of the

system. Future versions (starting with API version 1.2 which is due for release in late 2010)

will include capabilities for Authentication and Authorisation and additional algorithms for

calculating the applicability domain of a prediction model.

A key decision for the OpenTox prototype was the adoption of the REST architectural style,

because it is suitable for achieving three important goals: independent deployment of

components, ease of standardised communication between components and generality of

interfaces. These advantages will enable the development and integration of additional

algorithms in the future, which may be offered by a variety of third-party developers in the

community. Ongoing maintenance and addition of novel predictive algorithms relevant to

predictive toxicology will contribute to the long-term sustainability of OpenTox in

generating valuable resources for the user scientific community.

Continuing effort will be carried out by OpenTox developers to meet current academic and

industry challenges regarding interoperability of software components and integration of

data, algorithm and model services within the context of tested Use Cases. The experience

we have gained during this work should help speed up the development process towards

this direction. The approach to interoperability and standards lays a solid foundation to

extend application development within the broader developer community to establish

computing capabilities that are sorely missing in the field of predictive toxicology today,

and which are holding back advances in both R&D and the application of R&D project

outcomes to meet industry and regulatory needs.

7. References

[BUC10] Buchwald, F, Girschick, T, Frank, E, and Kramer, S (2010). Fast Conditional

Density Estimation for Quantitative Structure-Activity Relationships In:

Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 1268-

1273, AAAI Press.

[FIE00] Fielding, R.: Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, Irvine (2000)

[HAR10] Hardy, B., Douglas, N., Helma, C., Rautenberg, M., Jeliazkova, N., Jeliazkov,

V.,Nikolova, I., Benigni, R., Tcheremenskaia, O., Kramer, S., Girschick, T.,

Deliverable Report

 19

Buchwald,F., Wicker, J., Karwath, A., Gütlein, M., Maunz, A., Sarimveis, H.,

Melagraki, G.,Afantitis, A., Sopasakis, P., Gallagher, D., Poroikov, V.,

Filimonov, D., Zakharov, A., Lagunin, A., Gloriozova, T., Novikov, S.,

Skvortsova, N., Druzhilovsky, D., Chawla, S., Ghosh, I., Ray, S., Patel, H.,

Escher, S.: Collaborative Development of Predictive Toxicology Applications.

Journal of Cheminformatics, 2:7 doi:10.1186/1758-2946-2-7, Available in

Open Access at www.jcheminf.com/content/2/1/7 (2010)

[HEL06] C. Helma. Lazy structure-activity relationships (lazar) for the prediction of

rodent carcinogenicity and Salmonella mutagenicity. Molecular Diversity,

10:147-158, (2006)

[MAU10] Maunz, A., Helma, C., Kramer, S.: Efficient Mining for Structurally Diverse

Subgraph Patterns in Large Molecular Databases. Machine Learning, in press

(2010)

[PAT08] Patlewicz, G., Jeliazkova, N., Safford, R.J., Worth, A.P., Aleksiev, B.: An

Evaluation of the Implementation of the Cramer Classification Scheme in the

Toxtree Software. SAR & QSAR in Environmental Research 19(5-6) (2008)

495–524

http://www.jcheminf.com/content/2/1/7

Deliverable Report

 20

Appendix A – Example Java Resource

package opentox.algorithm.learning;

/**

* Import statements left out for brevity of this document. The complete TUM source code is

* available at:

* http://opentox.informatik.tu-muenchen.de/trac/TUMOpenTox/browser/trunk/src/opentox

* [...] means the code/text has been abbreviated

*/

/**

 * M5P regression algorithm from the WEKA workbench (http://www.cs.waikato.ac.nz/~ml/weka/)

 * wrapped as OpenTox REST web service.

 * […]

 * @author girschic, buchwald

 */

public class M5PResource extends AbstractLearningAlgorithm{

 /**

 * Constructor

 * @param context

 * @param request

 * @param response

 */

 public M5PResource(Context context, Request request, Response response) {

 /*

 * the buildRDF() and setDefaultParameters method are

 * called in the super constructor (AbstractAlgorithm)

 */

 super(context, request, response);

 // […]

 this.setModelID(getRequest().getRootRef().getIdentifier()+"/model/TUMOpenToxModel_M5P_"+

idCount);

 this.getVariants().add(new Variant(MediaType.TEXT_HTML));

 this.getVariants().add(new Variant(MediaType.TEXT_XML));

 this.getVariants().add(new Variant(MediaType.APPLICATION_RDF_XML));

 this.getVariants().add(new Variant(MediaType.APPLICATION_RDF_TURTLE));

 }

 @Override

 public void acceptRepresentation(Representation entity) {

 String model_uri = "";

 String uri = "";

 boolean paramsOK = true;

 String pred_feat = "";

Deliverable Report

 21

 String datasetservice = null;

 try{

 if (entity != null) {

 if (MediaType.APPLICATION_WWW_FORM.equals(entity.getMediaType(), true)) {

 Form form = new Form(entity);

 Map<String,String> m = form.getValuesMap();

 uri = form.getValues("dataset_uri");

 pred_feat = form.getValues("prediction_feature");

 datasetservice = form.getValues("dataset_service");

 /*

 * […] parameter and further input checking left out

 * In the callable object the actual calculations take place. As model creation can take long,

 * it is realized as an asynchronous task and an OpenTox task URI is returned immediately.

 */

 if(paramsOK == true){

 URI fileURI;

 try {

 fileURI = new URI(uri);

 URI pred = new URI(pred_feat);

 CallableM5P callable = new CallableM5P(fileURI, pred, getRequest());

 callable.setModelURI(getModelID());

 callable.setParams(params);

 callable.setDatasetService(datasetservice);

 Reference taskref = ((OpenToxApplicationTUM)getApplication()).addTask(callable,

getRequest().getRootRef());

 /*

 * Also set Location: header

 */

 getResponse().setLocationRef(taskref);

 getResponse().setEntity(new StringRepresentation(taskref.getIdentifier(),

MediaType.TEXT_URI_LIST));

 getResponse().setStatus(Status.SUCCESS_ACCEPTED);

 } catch (URISyntaxException e) {

 e.printStackTrace();

 }

 }

Deliverable Report

 22

Appendix B – Taverna OpenTox Workflow

Figure B1 Part one of a screenshot of the Taverna OpenTox example workflow. Available for

download at www.myexperiment.org/workflows/1119.html .

http://www.myexperiment.org/workflows/1119.html

Deliverable Report

 23

Figure B2 Part two of a screenshot of the Taverna OpenTox example workflow.

