

Deliverable D2.2

Report on the Initial

Framework Prototype

Grant Agreement Health-F5-2008-200787

Acronym OpenTox

Name An Open Source Predictive Toxicology Framework

Coordinator Douglas Connect

Deliverable Report

 2

Contract No. Health-F5-2008-200787

Document Type: Deliverable Report

WP/Task: WP2

Name Report on Prototype Framework

Document ID: OpenTox Deliverable Report D2.2

Date: March 8, 2010

Status: Final, v1.9

Organisation: Albert-Ludwigs Universität, Freiburg

Contributors Andreas Karwath ALU-FR

 Martin Gütlein ALU-FR

 Nina Jeliazkova IDEA

 Barry Hardy DC

 Nicki Douglas DC

 Andreas Maunz IST

Distribution: Public

Purpose of Document: To document results for this deliverable

Document History: 1 – Initial draft prepared on Feb 15, 2010

 2 – Updated Draft, 25 Feb, 2010

 3 – Updated Draft, 26 Feb, 2010

 4 – Updated Draft, 27 Feb, 2010

 5 – Final Version approved, 28 Feb 2010

 6 – Updated Version, 8 March 2010

Deliverable Report

 3

Table of Contents

Summary .. 5

1. Introduction ... 7

1.1 OECD Principles of (Q)SAR Validation .. 7

1.1.1 Defined Endpoint ... 7

1.1.2 An Unambiguous Algorithm ... 9

1.1.3 Defined Applicability Domain .. 10

1.1.4 Appropriate Measures of Goodness-of-Fit, Robustness and Predictivity 10

1.1.5 A Mechanistic Interpretation, if possible .. 11

1.2 OpenTox Design Principles ... 12

1.2.1 Interoperability .. 12

1.2.2 Flexibility ... 12

1.2.3 Transparency ... 12

1.2.4 Extensibility ... 13

2. Implementation Principles ... 13

2.1 Open Source .. 14

2.2 Open and Distributed Access .. 14

2.3 Open Interfaces ... 15

3. OpenTox API .. 15

3.1 Overview ... 15

3.2 Web services ... 16

3.2.1 Compound ... 17

3.2.1.1 Conformers (optional) .. 18

3.2.2 Feature ... 19

3.2.3 Dataset .. 20

3.2.4 Algorithm ... 22

3.2.5 Model ... 22

3.2.6 Validation .. 23

3.2.6.1 Standard Validation .. 23

Deliverable Report

 4

3.2.6.2 Cross-Validation... 25

3.2.6.3 Validation - Report ... 26

3.2.7 Task ... 27

3.2.8 Ontology Service .. 28

4. Prototype Use Cases ... 29

4.1 ToxPredict Use Case ... 29

4.1.1 Interaction of OpenTox services, employed in ToxPredict 36

4.2 ToxCreate Use Case .. 39

4.3 Validation Use Case: Building and Validating a Model 44

4.4 Testing Results ... 47

4.4.1 Server Testing .. 48

4.4.2 API testing ... 49

4.4.3 Use case testing ... 50

5. Discussion .. 54

5.1 Further Working Directions ... 54

5.2 Conclusions .. 55

6. Appendix .. 57

1 General Instructions ... 57

2 Beta Testing Objectives .. 57

3 Beta Testing Tasks.. 57

4 Known ToxPredict Problems ... 58

5 Part-A: Identification .. 59

6 Part-B: Functional Evaluation ... 59

7 Part-C: Overall Comments and Usability Evaluation .. 60

8 Part-D: Specific Bugs and Problems Noted ... 62

9 Part-E: Other Generic Topics .. 62

Deliverable Report

 5

Summary

The OpenTox Framework consists of a set of distributed web services for the construction

and application of predictive toxicity models. The Framework includes services for

compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and

reporting which may be combined into multiple applications satisfying a variety of user

needs. The guiding principles in the construction of OpenTox applications are based on

the OECD Principles of (Q)SAR Validation1, satisfying REACH legislation and user

requirements, and the additional design principles of interoperability, flexibility,

transparency and extensibility. A key feature of the OpenTox Framework is that it has been

designed in a multi-domain friendly way, which is essential for data and model sharing,

reproducibility and validation of prediction results. We report on how these principles

influenced the design and construction of the OpenTox Framework. The OpenTox

Application Programming Interfaces which connect multiple distributed web services in an

interoperable manner are described in detail. Based on these web services, two user

applications were created: a) ToxPredict which predicts and reports on toxicities for

endpoints for a user-provided input chemical structure, and b) ToxCreate which builds and

validates a predictive toxicity model based on a user-provided input toxicology dataset.

The results of initial user testing of both these applications are presented, and the issues

and lessons learned for subsequent development discussed.

The OpenTox Framework supports rapid application development and extensibility by

using well-defined ontologies, allowing simplified communication of data and meaning

between individual services. The ToxCreate and ToxPredict applications show the potential

impact of the Framework regarding high-quality and consistent structure-activity

relationship modeling of REACH-relevant endpoints. The applications have been made

available publically on the Web (www.opentox.org/toxicity-prediction) providing

immediate user access to the applications as they have been developed. User-based

testing and reporting provides a mechanism for users to provide feedback on features and

requests which can be quickly taken into account in the agile development approach

pursued, so as to improve the services offered to users in a timely manner.

ToxPredict satisfies a common and important situation for a user wishing to evaluate the

toxicity of a chemical structure. The user may upload or draw the chemical structure in a

web browser and quickly obtain a report back on what current data and model predictions

are available for the toxicity endpoints they have interest in. The user does not have to

1 ecb.jrc.ec.europa.eu/qsar/background/index.php?c=OECD

http://www.opentox.org/toxicity-prediction
http://ecb.jrc.ec.europa.eu/qsar/background/index.php?c=OECD

Deliverable Report

 6

cope with many current challenges such as the difficulty of finding or using existing data

or creating and using complicated computer models. Because of the extensible nature of

the standardised design of the OpenTox Framework, many new datasets and models from

other researchers may be easily incorporated in the future, both strengthening the value

offered to the user and ensuring that research results are not left languishing unused in

some isolated, unintegrated resource not accessible to the user. The approach offers the

potential to be extended to the complete and easy-to-use generation of reporting

information on all REACH-relevant endpoints based on existing available scientific

research results, and indications when additional experimental work is required, thus

satisfying currently unmet industry and regulatory needs.

ToxCreate provides a resource to modellers to build soundly-based predictive toxicology

models, basely solely on a user-provided input toxicology dataset that can be uploaded

through a web browser. The models can be built and validated in an automated and

scientifically sound manner, so as to ensure that the predictive capabilities and limitations

of the models can be examined and understood clearly. Models can subsequently be easily

made available to other researchers and combined seamlessly into other applications

through the OpenTox Framework. Barriers of interoperability between applications and

content that are current significant pain points of cost and time for industry users are

removed, as the user may combine data, models and validation from multiple sources in a

dependable and time-effective way.

Deliverable Report

 7

1. Introduction

The OpenTox Framework prototype consists of a set of distributed web services for the

construction and application of predictive toxicity models. The Framework includes

services for datasets, algorithms, features, models, validation, and reporting. The guiding

principles in the construction of the prototype are the OECD Principles of (Q)SAR

Validation, and the additional design and application principles of interoperability,

flexibility, transparency and extensibility. On a technical basis, the construction of the

framework was guided by open source development, incorporation of standards and

ontologies, and distributed integration of web services into applications, enabling

participation from multiple resource providers. In the sub-sections below we will discuss

these principles and how they were incorporated into the prototype.

1.1 OECD Principles of (Q)SAR Validation

Here we briefly review the five OECD (Q)SAR validation principles and their relevance to the

OpenTox prototype development. We have incorporated these principles in the OpenTox

Framework design as much as possible and wherever appropriate.

1.1.1 Defined Endpoint

(Q)SAR model quality crucially depends on the clarity of endpoints and experimental

protocols used and the ability to communicate this information in an unambiguous way,

both in model development and model application. The current practice usually includes a

textual description of the materials and methods used for acquiring experimental data as

well as literature references, while the model description is a separate entity. The challenge

to the distributed web services framework, described in this report, was to provide an

automatic and unique way of describing and linking the endpoint information in a formal

way, able to be processed automatically by the software, with minimal human interaction.

This is currently solved by making use of a simple ontology of endpoints. We have defined

an ontology based on the OWL (Web Ontology Language)2 for toxicological endpoints

which is in line with current ECHA REACH guidance3. Using this ontology, each attribute in

a toxicological dataset can be associated with an entry to the ontology, therefore allowing

a unique mapping between endpoints in various and heterogeneous datasets. This

2 www.w3.org/TR/owl-features/

3 guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08

http://www.w3.org/TR/owl-features/
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08

Deliverable Report

 8

ontology possesses 5 subclasses: ecotoxic effects, environmental fate parameters, human

health effects, physio-chemical effects, and toxicokinetics. Each of these subclasses has

one or two further layers of subclasses. A graphical overview can be seen in Figure 1.1

whereas Figure 1.2 shows a level 3 subclass for carcinogenicity. In the future, this ontology

will be extended to include complete information about the test study of the dataset.

Figure 1.1 A graphical overview of the ECHA endpoints ontology in OWL

Figure 1.2 The carcinogenicity subclass in the human health effect class of the ontology

Deliverable Report

 9

The endpoint ontology can be accessed in the development documents section of the

OpenTox website4 and can be viewed with the Protégé5 editor.

1.1.2 An Unambiguous Algorithm

Currently OpenTox is deploying an algorithm type ontology6. This ontology allows a clear

definition of what type of algorithm is used to construct a model. Figure 1.3 shows a

graphical overview of the current version of this ontology. The plan is to extend this

ontology in the future to a full description of every algorithm, including references,

parameters and default values. This will be achieved by adopting the Blue Obelisk

ontology7 and is currently work-in-progress.

Figure 1.3 A graphical overview of the current AlgorithmType ontology

4 www.opentox.org/data/documents/development/RDF files/Endpoints/

5 protege.stanford.edu

6 www.opentox.org/data/documents/development/RDF files/AlgorithmType

7 qsar.svn.sf.net/viewvc/qsar/trunk/qsar-dicts/descriptor-ontology.owl?revision=218

http://www.opentox.org/data/documents/development/RDF%20files/Endpoints/
http://protege.stanford.edu/
http://www.opentox.org/data/documents/development/RDF%20files/AlgorithmType
http://qsar.svn.sf.net/viewvc/qsar/trunk/qsar-dicts/descriptor-ontology.owl?revision=218

Deliverable Report

 10

Figure 1.4 A textual overview of the algorithm type ontology.

1.1.3 Defined Applicability Domain

We handle applicability domain as an algorithm or model, e.g. a specific applicability

domain algorithm is applied to a dataset, and the result is then an applicability domain

model. This model can then be applied to reason about the applicability of a model when

applied to a novel compound. Currently, this approach is not yet fully reflected within the

ontology. Nevertheless, we are planning to integrate this in forthcoming ontology updates,

as well as in the next development iteration of the API (1.2), which is scheduled to be

completed for September 2010.

1.1.4 Appropriate Measures of Goodness-of-Fit, Robustness and

Predictivity

Within the validation part of the prototype framework, we have concentrated so far on

including validation and cross-validation objects. These include a wide variety of measures

Deliverable Report

 11

for evaluating the quality of models generated by algorithms on the datasets. These

measures include for classification tasks:

Name Explanation

Confusion Matrix A confusion matrix is a matrix, where each row of the matrix represents the
instances in a predicted class, while each column represents the instances
in an actual class. One benefit of a confusion matrix is that it is easy to see if
the system is confusing two or more classes.

Absolute number and
percentage of
unpredicted compounds

Some compounds might fall outside the applicability domain of the
algorithm or model. These numbers provide an overview on the
applicability domain fit for the compound set requiring prediction.

Precision, recall, and F2-
measure

These three measures give an overview on how pure and how sensitive the
model is. The F2-measure combines the other two measures.

ROC curve plot and AUC A receiver operating characteristic (ROC) curve is a graphical plot of the
true-positive rate against the false-positive rate as its discrimination
threshold is varied. This gives a good understanding of how well a model is
performing. As a summarisation performance scalar metric, the area under
curve (AUC) is calculated from the ROC curve. A perfect model would have
area 1.0, while a random one would have area 0.5.

And for regression tasks:

Name Explanation

MSE and RMSE The mean square error (MSE) and root mean squared error (RMSE) of a
regression model are popular ways to quantify the difference between the
predictor and the true value.

R2 The explained variance (R²) provides a measure of how well future
outcomes are likely to be predicted by the model. It compares the
explained variance (variance of the model's predictions) with the total
variance (of the data).

1.1.5 A Mechanistic Interpretation, if possible

As mechanistic interpretation often relies on human knowledge, this usually cannot be

done automatically. However, in the current API it is foreseen to generate skeletons for

reporting using the validation results created by extensive testing during model

construction, allowing subsequent user-entered explanations about mechanisms. Other

potential future extensions of OpenTox services could include resources providing insight

on mechanisms, e.g. from pathways and systems biology models, selection and inclusion

of in vitro assays relevant to the mechanism in the model, or from data mining of human

adverse events data.

Deliverable Report

 12

QMRF reporting will be facilitated by integration of the existing QMRF editor8 into OpenTox

applications, and allowing the end-users to annotate models with the information required

by the QMRF format.

1.2 OpenTox Design Principles

The design principles of interoperability, flexibility, transparency and extensibility are key

ingredients of the OpenTox Framework design, which additionally guide its architecture

and implementation.

1.2.1 Interoperability

Interoperability with respect to the OpenTox Framework refers to the principle that

different OpenTox components or services may correctly exchange information with each

other and subsequently make use of that information. Both syntactic interoperability for

correct data exchange and semantic interoperability supporting the accurate

communication of meaning and interpretation of data are supported principles for

OpenTox resources. The principles are reflected design-wise in the use of open,

standardised interfaces and ontologies. The principles are relevant in application

development and deployment when a combination of distributed multiple services can

provide value to a user in completing a use case satisfactorily.

1.2.2 Flexibility

As there exist a significant variety of user scenarios, requirements and use cases in

predictive toxicology, flexibility is a key principle incorporated into OpenTox. Through the

use of a component-based approach and the incorporation of the interoperability

principles, many different and customised applications can be assembled that are based on

the underlying platform.

1.2.3 Transparency

To achieve the scientific objective of knowledge-based enquiry based on principles of

reasoning, reproducibility, and reliability, OpenTox supports the principle of Transparency

in its design. Computational models should be available for scrutiny by other scientists in

as complete a manner and detail as possible. Evaluators and regulators should be able to

both understand the details and accurately reproduce the results of predictive toxicity

8 ambit.sourceforge.net/qmrf/jws/qmrfeditor.jnlp

http://ambit.sourceforge.net/qmrf/jws/qmrfeditor.jnlp

Deliverable Report

 13

models, and be able to reliably form judgements on their validity as evidence. The

principle also supports achievement of the OECD validation principles such as an

unambiguous algorithm and a mechanistic interpretation, if possible. Use of Open Source,

Open Interfaces and Standards within OpenTox support implementation of this

Transparency principle applied to in silico-based predictive toxicology applications and

their reported results.

1.2.4 Extensibility

The field of predictive toxicology is rapidly developing and broadening in many areas

including the use of biomarkers, systems biology, epigenetics, toxicokinetics, in vitro

assays, stem cell technology, computational biology etc. Hence, OpenTox needs to be

extensible to a broad range of future predictive toxicology applications. In such

applications, contributing and diverse experimental data and models need to be combined

as evidence supporting integrated testing, safety assessment and regulatory reporting as

stipulated under REACH. In the initial design of the OpenTox Framework we have

attempted to design a general solution for (Q)SAR model development and application. We

also will address and strengthen its extensibility in subsequent project activities, and

guided by suitable use cases, to additional areas of scientific enquiry in the predictive

toxicology field as part of its evolutionary development.

2. Implementation Principles

OpenTox is an open source project and tries to follow the best practices of open source

project management. This means that source code, technical discussions and documents

are open to the general public and interested parties can participate in development.

Within the design of the framework prototype we have concentrated on a number of

principles:

 Open Source

 Open and Distributed Access

 Open Interfaces

In the following sections we describe these implementation principles in more detail.

Deliverable Report

 14

2.1 Open Source

As the open source philosophy is inherently important for this project, all tools developed

are openly available via public repositories. For example, details on current test services

can be found on the OpenTox development testing web pages9. Within the framework, a

variety of programming languages have been employed, such as Java, Ruby, and C++.

2.2 Open and Distributed Access

All current OpenTox web services adhere to the REpresentational State Transfer (REST) web

service architecture10 for sharing data and functionality among loosely-coupled,

heterogeneous systems. The REST architecture is based on five key principles:

1. Every resource can be uniquely identified;

2. Use standard HTTP;

3. Allow multiple representations of resources;

4. Use hypertext links for linking of resources;

5. Communicate statelessly.

Adhering to these principles, the REST web service architecture has a number of desired

advantages when compared to other web service architectures:

1. It is lightweight, as only some additional xml mark-up is required;

2. The produced results are human readable, i.e. the resources are uniquely identified

by URIs and described by representations;

3. RESTful web services are typically stateless and scalable;

4. The produced web services have a uniform interface (the only allowed operations

are the HTTP operations);

5. Components manipulate resources by exchanging representations of the resources.

The choice of employing web services allows the complete framework to operate in

different locations, independent of operating systems and underlying implementation

details.

9 www.opentox.org/dev/testing/testtoxservices

10 Fielding, R.T., Architectural Styles and the Design of Network-based Software Architectures,

 Ph.D. dissertation, in University of California, Irvine. 2000

http://www.opentox.org/dev/testing/testtoxservices

Deliverable Report

 15

2.3 Open Interfaces

The publicly available OpenTox application programming interface (API) allows the

cheminformatics and bioinformatics communities to participate in the development of new

algorithms. It furthermore allows the independent comparisons of algorithms and models.

We describe the current OpenTox API 1.1 in the next section, with respect to design issues

and interoperability.

3. OpenTox API

To assure reliable interoperability between the various web services, a well-defined API is

required. The API specifies how each OpenTox web service can be used, and how the

returned resources look like. It further specifies the HTML status codes returned in case of

succeeded operations as well as errors codes.

This section describes the OpenTox API version 1.1, the second version of the OpenTox

API that was completed and published on the OpenTox website in November 2009. A short

overview is given below, as well as a listing of all components including REST operations.

3.1 Overview

Figure 3.1 shows the OpenTox resources modelled in the OpenTox Ontology. These

resources are provided by the various OpenTox web services. The links between the

components reflects interaction between the respective web services.

The model web service (3.2.5) provides access to (prediction) models. Models are created

via the algorithm web service (3.2.4), that supports different types of algorithms (e.g.

supervised learning, feature selection, descriptor calculation, and data cleanup). Building a

model will normally require various parameters, one/several dataset/s, as well as a set of

features.

Datasets are stored in the dataset web service (3.2.3). A dataset contains data entries,

which are chemical compounds, as well as their feature values. Features are defined as an

object representing a property of a compound, including descriptors and calculated

features, endpoints, and predictions. Different representations for chemical compounds

can be accessed from the compound web service (3.2.1). The feature web service (3.2.2)

provides the available features (e.g. structural features, chemical descriptors, endpoints).

The validation web service (3.2.6) evaluates and compares the performance of prediction

models. Simple training-test-set-validation is supported as well as cross-validation. The

validation result contains quality figures as defined in 1.1.4. The service further provides

reports (available in html, PDF ...) that visualize the validation results.

Deliverable Report

 16

The task web service (3.2.7) supports long-running, asynchronous processes. The

ontology web service (3.2.8) provides meta information from relevant ontologies (which

can be accessed using SPARQL queries11), as well as lists of available services. Approaches

to Authentication and Authorization will be specified in the next version of the API.

Figure 3.1 Relationships between OpenTox resources, modeled in OpenTox ontology.

3.2 Web services

This section describes REST operations and HTML status codes for OpenTox web services.

Additional information (e.g. data representation format) can be found on the OpenTox API

webpage12.

11 www.w3.org/TR/rdf-sparql-query/

12 www.opentox.org/dev/apis/api-1.1

http://www.w3.org/TR/rdf-sparql-query/
http://www.opentox.org/dev/apis/api-1.1

Deliverable Report

 17

3.2.1 Compound

The Compound API provides different representations for chemical compounds with a

unique and defined chemical structure.

REST operations
Description Method URI Parameters Result Status codes

Search for

compounds

GET /compound ?search=value&sameas=URI_FROM_AN_ONTOLOGY List of compounds,

matching the

query.

200,404,503

Get the

representation

of a compound

GET /compound/{id} (optional)

?feature_uris[]="URI to features"

Compound

representation in

one of the

supported MIME

formats; if

feature_uris[]

provided includes

features and

values.

200,404,503

Create a new

compound

POST /compound Compound representation in a supported MIME

format

URIs for new

compounds.

200,400,503

Update a

compound

(optional)

PUT /compound/{id} Compound representation in a supported MIME

format

– 200,400,404,503

Delete a

compound

(optional)

DELETE /compound/{id} – –

Delete all feature

values per

compound

recursively?

200,400,404,503

Features per Compound
Description Method URI Parameter Result Status codes

Get

available

feature URIs

for a

compound

GET /compound/{cid}/feature ?feature_uris[]="URIto

features" (optional)

Returns representation of the

features as uri-list or RDF

All available features are returned,

if no parameter is specified.

200,404,503

Create a

new feature

value

POST /compound/{cid}/feature ?feature_uri="URIto feature"

(mandatory, single

feature)&value=the_value

URI of the compound with the new

feature, e.g.

/compound/{id}?feature_uris[]=the-

new-feature

200,400,503

Update a

new feature

value

PUT /compound/{cid}/feature ?feature_uri="URIto feature"

(mandatory, single

feature)&value=the_value

 200,400,404,503

Delete

specified

features

from the

compound

DELETE /compound/{cid}/feature ?feature_uris[]="URIto

features" (optional)

 200,400,404,503

Deliverable Report

 18

HTTP status codes
Interpretation Nr Name

Success 200 OK

Compound not found 404 Not Found

Incorrect MIME type 400 Bad request

Service not available 503 Service unavailable

3.2.1.1 Conformers (optional)

The Comformers API provides [Optional] support for multiple (e.g. 3D) structures per

chemical compound (single structure by default).

REST operations
Description Method URI Parameters Result Status codes

Get available

structures of a

compound

GET /compound/{id1}/conformer/ - List of structure URIs. 200,404,503

Create a new

structure

POST /compound/{id1}/conformer Representation in a

supported MIME

format.

New URI

/compound/{id1}/conformer/{id2}

200,400,503

Remove all

structures

DELETE /compound/{id1}/conformer/ – – 200,400,404,503

Get the

representation

of a structure

GET /compound/{id1}/conformer/{id2} ?feature_uris[]="URI

to features"

Representation in a supported

MIME format, with feature values,

if feature_uris[] provided.

200,404,503

Update the

representation

of a structure

PUT /compound/{id1}/conformer/{id2} Representation in a

supported MIME

format.

URI

/compound/{id1}/conformer/{id2}

200,400,404,503

Remove a

structure

DELETE /compound/{id1}/conformer/{id2} – – 200,400,404,503

Features per Conformer
 Description Method URI Parameter Result Status codes

Get available

feature URIs

for a

compound

GET /compound/{cid}/conformer/{cid}/feature ?feature_uris[]="URIto

features" (optional)

Returns

representation of the

features as uri-list or

RDF.

All available features

are returned, if no

parameter is

specified.

200,404,503

Create a new

feature value

POST /compound/{cid}/conformer/{cid}/feature ?feature_uri="URIto

feature" (mandatory, single

feature)&value=the_value

URI of the compound

with the new feature,

e.g.

/compound/{id}/

conformer/{cid}?

feature_uris[]=the-

new-feature

200,400,503

Deliverable Report

 19

Update a new

feature value

PUT /compound/{cid}/conformer/{cid}/feature ?feature_uri="URIto

feature" (mandatory, single

feature)&value=the_value

 200,400,404,503

Delete

specified

features from

the

compound

DELETE /compound/{cid}/conformer/{cid}/feature ?feature_uris[]="URIto

features" (optional)

 200,400,404,503

HTTP status codes

See HTTP status codes for compounds.

3.2.2 Feature

A Feature is an object, representing any kind of property, assigned to a Compound. The

feature types are determined via their links to ontologies (Feature ontologies, Descriptor

ontologies, Endpoints ontologies).

REST operations
Description Method URI Parameters Result Status codes

get description of a

specific feature

definition

GET /feature/{id} - URI-list or RDF representation of a

feature.

200,404,503

create a new feature POST /feature Content-type="any-of-RDF-

types", content=RDF-

representation

URI of the new feature definition. 200,400,404,503

update feature PUT /feature/{id} Content-type="any-of-RDF-

types", content=RDF-

representation

- 200,400,404,503

delete feature DELETE /feature/{id} - - 200,400,404,503

get a list of available

feature definitions

GET /feature ?query=URI-of-the-

owl:sameAs-entry

URI list or RDF of features found by

the query or all available, if query is

empty.

Returns all features, for which

owl:sameAs is given by the query.

200,404,503

HTTP status codes
Interpretation Nr Name

Success 200 OK

No feature found, or specific featurenot found 404 Not Found

Incorrect parameters 400 Bad request

Service not available 503 service unavailable

Deliverable Report

 20

3.2.3 Dataset

The Dataset API provides access to chemical compounds and their features (e.g. structural,

physical-chemical, biological, and toxicological properties)

REST operations
Description Method URI Parameters Result Status codes

Get a list of

available

datasets

GET /dataset Query parameters (optional, to

be defined by service

providers).

List of URIs

or RDF for the metadata

only.

200,404,503

Get a

dataset

GET /dataset/{id} - Representation of the

dataset in a supported

MIME type.

200,404,503

Query a

dataset

GET /dataset/{id} compound_uris[] and/or

feature_uris[] to select

compounds and features;

further query parameters may

be defined by service providers.

Representation of the

query result in a

supported MIME type.

200,404,503

Get

metadata

for a

dataset

GET /dataset/{id}/metadata - Representation of the

dataset metadata in a

supported MIME type.

200,404,503

Get a list of

all

compounds

in a dataset

GET /dataset/{id}/compounds - List of compound URIs. 200,404,503

Get a list of

all features

in a dataset

GET /dataset/{id}/features - RDF or List of feature

URIs (pointing to feature

definitions/ontologies).

200,404,503

Create a

new dataset

POST /dataset Dataset representation in a

supported MIME type. MIME

type to be specified via:

Content-type header.

 Content-

type:application/www

-form-urlencoded

dataset_uri ,

feature_uris[] and

compound_uris[]

parameters are used

to specify subset of a

dataset, as in GET

operation;

 File upload via

Content-

type:multipart/form-

data: file parameter;

 File upload metadata:

parameters as in

opentox.owl

New URI /dataset/{id} or

redirect to task URI (for

large uploads).

200,202,400,503

Deliverable Report

 21

Update a

dataset

PUT /dataset/{id} Data representation

in a supported MIME

type;

 entries for existing

compound/feature

pairs will be

overwritten, entries

for new

compound/features

will be added;

 File upload metadata:

Dublin core

annotation

parameters, as in

opentox,owl#Dataset

 Content-

type:application/www

-form-urlencoded

dataset_uri ,

feature_uris[] and

compound_uris[]

parameters are used

to specify subset of a

dataset, as in GET

operation;

 File upload via

Content-

type:multipart/form-

data: file parameter

 File upload metadata:

Dublin core

annotation

parameters, as in

opentox,owl#Dataset

Dataset URI or task URI. 200,202,400,404,503

Remove a

dataset

DELETE /dataset/{id} - - 200,404,503

Remove a

part of the

dataset

DELETE /dataset/{id} compound_uris[] and/or

feature_uris[]; further query

parameters may be defined to

select the data to be deleted.

- 200,404,503

HTTP status codes
Interpretation Nr Name

Success 200 OK

Asynchronous task started 202 Accepted

Dataset not found 404 Not Found

Incorrect MIME type 400 Bad request

Service not available 503 Service unavailable

Deliverable Report

 22

3.2.4 Algorithm

The Algorithms API Provides access to OpenTox algorithms.

REST operations
Description Method URI Parameters Result Status codes

Get URIs of all

available

algorithms

GET /algorithm (optional)

?sameas=URI-of-the-owl:sameAs-

entry

List of all algorithm URIs or

RDF representation, or

algorithms of specific types,

if query parameter exists.

Returns all algorithms, for

which owl:sameAs is given by

the query.

200,404,503

Get the ontology

representation of

an algorithm

GET /algorithm/{id} - Algorithm representation in

one of the supported MIME

types.

200,404,503

Apply the algorithm POST /algorithm/{id} dataset_uri

parameter

prediction_feature,

more to be specified and documented

by algorithm provider

dataset_service=datasetserviceuri

model URI

dataset URI

featureURI

Redirect to task URI for time

consuming computations.

200,303,404,503

 HTTP status codes
Interpretation Nr Name

Success 200 OK

No algorithm in the respective category found, or specific algorithm not found 404 Not Found

Incorrect dataset URI, or incorrect parameters 400 Bad request

Model building error 500 Internal Server Error

Model building in progress (redirect to task URI) 303 Redirect

Service not available 503 Service unavailable

3.2.5 Model

The Model API provides access to OpenTox prediction models.

REST operations
Description Method URI Parameters Result Status codes

Get a list of all

available models

GET /model (optional)

?query=URI-of-the-owl:sameAs-

entry

List of model URIs or RDF

representation.

If query specified, returns all

200,404,503

Deliverable Report

 23

models, for which

owl:sameAs is given by the

query.

Get the

representation of

a model

GET /model/{id} - Representation of the model

in a supported MIME type.

200,404,503

Delete a model DELETE /model/{id} - - 200,404,503

Apply a model to

predict a dataset

POST /model/{id} dataset_uri

result_dataset=dataseturi

dataset_service=datasetserviceuri

URI of created prediction

dataset (predictions are

features), task URI for time

consuming computations.

200,202,400,404,500,503

Apply a model to

predict a

compound

POST /model/{id} compound_uri Prediction in a supported

MIME type; task URI for time

consuming computations.

200,202,400,404,500,503

Model variables

REST operations

Description Method URI Parameters Result Status codes

List of independent

variables

GET /model/{id}/independent - URI-list/RDF of features used as independent

variables.

200,404,503

List of dependent

variables

GET /model/{id}/dependent - URI-list/RDF of features used as dependent

variables.

200,404,503

List of predicted features GET /model/{id}/predicted - URI-list/RDF of features, where predictions

are stored.

200,404,503

HTTP status codes
Interpretation Nr Name

Success 200 OK

Asynchronous task accepted 202 Accepted

Dataset_id is wrong 400 Bad Request

Model for specific id not found 404 Not Found

Prediction error 500 Internal server error

Service not available 503 Service unavailable

3.2.6 Validation

3.2.6.1 Standard Validation

A validation corresponds to the validation of a model on a test dataset. The results are

stored in another dataset. Parameters with default values are optional.

REST operations

Deliverable Report

 24

Description Method URI Parameters Result Status codes

Get all validations GET / - List of validation URIs. 200,404

Retrieves a validation

representation

GET /{id} - Validation

representation in one

of the supported MIME

types.

200,404

Validates a model on a test

dataset

POST / model_uri

test_dataset_uri

Validation URI or Task

URI.

200,400,404,500

Builds a model on a training

dataset and validates it on a

test dataset

POST / algorithm_uri

prediction_feature

algorithm_params (string,

default="")

training_dataset_uri

test_dataset_uri

y_scramble (boolean,

default=false)

y_scramble_seed (integer,

default=1)

Validation URI or Task

URI.

200,400,404,500

Splits a dataset into training

and test dataset according to

a certain ratio, and performs

a validation

POST /training_test_split algorithm_uri

prediction_feature

algorithm_params (string,

default="")

dataset_uri

split_ratio(float, default=0.66)

random_seed(integer,

default=1)

y_scramble (boolean,

default=false)

y_scramble_seed (integer,

default=1)

Validation URI or Task

URI.

200,400,404,500

OPTIONAL:

Performs a bootstrap

validation

POST /bootstrap algorithm_uri

prediction_feature

dataset_params (string,

default="")

dataset_uri

bootstrap_percentage(float,

default=0.66)

random_seed(integer,

default=1)

y_scramble (boolean,

default=false)

y_scramble_seed (integer,

default=1)

Validation URI or Task

URI.

200,400,404,500

Deletes a validation. DELETE /{id} - - 200,404

HTTP status codes
Interpretation Nr Name

Success 200 OK

Validation not found 404 Not Found

Illegal model/algorithm/dataset/algorithm params 400 Bad request

Validation/prediction error 500 Internal Server Error

Deliverable Report

 25

3.2.6.2 Cross-Validation

Performs a k-fold cross-validation, resulting in k validations resources. Parameters with

default values are optional.

REST operations
Description Method URI Parameters Result Status codes

Get all cross-validations GET /crossvalidation - List of cross-

validation URIs.

200,404

Retrieves a cross-

validation representation

GET /crossvalidation/{id} - Cross-Validation in

one of the supported

MIME types.

200,404

Returns all (k) validations

that belong to a

crossvalidation

GET /crossvalidation/{id}/validations - List of validation

URIs.

200,404

Performs a k-fold cross-

validation

POST /crossvalidation algorithm_uri

prediction_feature

algorithm_params

(string, default="")

num_folds (integer,

default=10)

random_seed (integer,

default=1)

stratified (boolean,

default=true)

y_scramble (boolean,

default=false)

y_scramble_seed

(integer, default=1)

Cross-Validation URI

or Task URI.

200,400,404,500

Performs a leave-one-out

cross-validation

POST /crossvalidation/loo algorithm_uri

prediction_feature

algorithm_params

(string, default="")

y_scramble (boolean,

default=false)

y_scramble_seed

(integer, default=1)

Cross-Validation URI

or Task URI.

200,400,404,500

Deletes a cross-

validation

DELETE /crossvalidation/{id} - - 200,404

HTTP status codes
Interpretation Nr Name

Success 200 OK

Cross validation not found 404 Not Found

Illegal model/algorithm/dataset/algorithm params 400 Bad request

Validation/prediction error 500 Internal Server Error

Deliverable Report

 26

3.2.6.3 Validation - Report

The validation report visualizes the (prediction) results of algorithms.

REST operations
Description Method URI Parameters Result Status codes

Get all report types GET /report - List of

available

report types.

200,404

Get all reports for the

particular report type

GET /report/{report-type} - List of

available

reports as

URI.

200,404

Retrieves a report in XML / PDF

/ HTML / RTF format

GET /report/{report-type}/{id} - Report in

specified

format.

200,404

Creates a report POST /report/{report-type} various params, see below Report URI

or Task URI.

200,400,404,500

Deletes a report DELETE /report/{report-type}/{id} - - 200,404

Available (validation-)report

types

Create ToxPredict report

(multiple models, one

compound to predict)

POST /report/toxpredict List of validation URIs. Report URI

or Task URI

200,400,404,500

Create single validation report

(one model, one test dataset)

POST /report/validation Validation URIs. Report URI

or Task URI

200,400,404,500

Create cross-validation report

(crossvalidation with one

algorithm and one dataset)

POST /report/crossvalidation Cross-validation URIs. Report URI

or Task URI

200,400,404,500

Create report for comparing

different prediction algorithms

(cross-validations/validations

with multiple algorithms and

datasets)

POST /report/algorithm_comparison List of cross-validation

URIs

or list of validation URIs.

Report URI

or Task URI

200,400,404,500

Create report for comparing

different models

POST /report/model_comparison List of validation URIs. Report URI

or Task URI

200,400,404,500

Special report formats

Create QMRF report POST /report/qmrf Model URI

or

a List of cross-validation

URIs

and/or validation URIs of

the same model;

additional fields of the

report that cannot be filled

out automatically (yet to be

defined).

Report URI

or Task URI

200,400,404,500

Create QPRF report POST /report/qprf Model URI

or

a List of cross-validation

URIs

and/or validation URIs of

Report URI

or Task URI

200,400,404,500

Deliverable Report

 27

the same model;

additional fields of the

report that cannot be filled

out automatically (yet to be

defined).

HTTP status codes
Interpretation Nr Name

Success 200 OK

Report type / report not found 404 Not Found

Illegal params 400 Bad request

Error creating the report 500 Internal Server Error

3.2.7 Task

Asynchronous jobs are handled via an intermediate Task resource. A resource, submitting

an asynchronous job should return the URI of the task.

REST operations
Description Method URI Parameters Result Status codes

Get a list of all available

tasks

GET /task ?query=task status as in

opentox.owl

List of URIs/RDF representation. 200,503,401

Get the representation of a

running task

GET /task/{id} - Task representation in one of the

supported MIME formats.

202,404,503,401

Get the representation of a

completed task

GET /task/{id} The URI of the newly created resource

in the Location header.

303,404,503

Delete a task DELETE /task/{id} 200, 404,

503,401

HTTP status codes
Interpretation Nr Name

Success 200 OK

Task resource created 201 The request has been fulfilled and resulted in a new resource being created.

The Task is not completed 202 accepted, processing has not been completed

The Task is completed 303 The task is completed, the URL where the resource is available is in the Location header (mandatory)

task_id is wrong 400 Bad Request

Not Authorized 401 Not Authorized

Task for specific id not found 404 Not Found

Error 500 Internal server error

Service not available 503 Service unavailable

Deliverable Report

 28

3.2.8 Ontology Service

The Ontology Service provides storage and search functionality for objects, defined in

OpenTox services and relevant ontologies

REST operations
Description Method URI Parameters Result Status codes

Retrieve SPARQL

query results

GET /ontology ?query=SPARQL_QUERY

(mandatory)

RDF representation of the query

results.

200,404,500

Predefined query

to retrieve all

models

GET /ontology/models RDF representation of all models.

Predefined query

to retrieve all

endpoints

GET /ontology/endpoints RDF representation of all endpoints.

Predefined query

to retrieve all

algorithms

GET /ontology/algorithms RDF representation of all

algorithms.

Submit SPARQL

query and/or

OpenTox service

URL

POST /ontology

uri[]=URL of a OpenTox

RDF resource

query=SPARQL_QUERY

RDF representation of the query

results, if query is specified.

if uri[] is specified, the server

retrieves a RDF representation and

adds it to the RDF storage, thus

making it available for the

subsequent queries.

Any non-empty subset of

parameters is valid (i.e. only query,

only model_uri, query and

algorithm_uri, etc.).

200,404,500,502

 HTTP status codes
Interpretation Nr Name

Success 200 OK

Wrong query syntax 404 Bad request

 500 Internal server error

Error when retrieving RDF representation from specified URL 502

Deliverable Report

 29

4. Prototype Use Cases

We identified two initial use cases for the implementation of the OpenTox Framework

prototype. The first case, ToxPredict, is aimed at the user having no or little experience in

QSAR predictions. This use case should offer an easy-to-use user interface, allowing the

user to enter a chemical structure and to obtain in return a toxicity prediction for one or

more endpoints. The second case, ToxCreate, is aimed at the experienced user, allowing

them to construct and to validate models using a number of datasets and algorithms.

Both use cases also demonstrate inter-connectivity between multiple partner services.

Within ToxPredict, several web services from partners TUM, IDEA, and NTUA are operating

together, while in ToxCreate the model construction is performed using partner IST‟s web

services, while the validation and reporting is executed using partner ALU‟s services. An

important subsequent step to be pursued in forthcoming development iterations will be

the interoperation of ToxCreate and ToxPredict across the combined services of five or

more partners.

Within this section, we also provide a more technical use case of building and validating a

model. The use case is one of the underlying use cases within the ToxPredict use case,

where an algorithm trains a model on a training dataset, and then predicts the compounds

of a test dataset with regards to a certain endpoint.

4.1 ToxPredict Use Case

As the ToxPredict use case should offer easy access to estimate the toxicological hazard of

a chemical structure for non-QSAR specialists, the main aim was to design a simple yet

easy-to-use user interface. For this, one of the aims was also to reduce the number of

possible parameters the user has to enter when querying the service. The use case can be

divided into the following five steps:

1. Enter/select a chemical compound

2. Display selected/found structures

3. Select models

4. Perform the estimation

Deliverable Report

 30

5. Display the results

The following sequence of screenshots and descriptions explain the workflow and

operations of a sample ToxPredict user session.

1. Enter/select a chemical compound

The first step in the ToxPredict workflow provides the means to specify the chemical

structure(s) for further estimation of toxicological properties. Free text searching allows

the user to find chemical compounds by chemical names and identifiers, SMILES and InChI

strings, and any keywords available in the OpenTox database. The database contains

information from multiple sources, including the ECHA pre-registration list, and was

created within OpenTox WP3. Its content and procedures for curation are extensively

described in the OpenTox D3.2 deliverable report (28 February 2010).

Deliverable Report

 31

2. Display selected/found structures

The second step displays the chemical compounds, selected by the previous step. In the

next release, this step will be updated to allow the selection/de-selection of structures,

and editing of the structures and associated relevant information. The OpenTox REST

Dataset services are used in this step of the application in order to retrieve the requested

information.

Deliverable Report

 32

3. Select models

In the third step, a list of available models is displayed. Links to training datasets,

algorithms and descriptor calculation REST services are provided. The models provide

information about the independent variables used, the target variables (experimental

toxicity data) and predicted values. All these variables are accessible via the OpenTox

Feature web service, where each feature can be associated with a specific entry from the

existing endpoint ontology. The association is usually done during the upload of the

training data into the database. The endpoint, associated with the model variables is

automatically retrieved and displayed in the first column of the list. This provides an

automatic and consistent way of complying with the first OECD validation principle of

using a “Defined endpoint”.

This step involves an interplay between multiple OpenTox web services. Algorithm, Model,

and Feature services are registered into the Ontology service, which provides RDF triple

storage with SPARQL, allowing various queries. The ToxPredict application queries the

Ontology service for all available models, along with the associated information about

algorithms used in the model, descriptors, and endpoints. The list of models may include

models, provided by different partners and running on several remote sites (TUM and IDEA

models are shown in this example). The Ontology service serves like a hub for gathering a

list of available models and algorithms from remote sites. There could be multiple

Deliverable Report

 33

instances of the ToxPredict application, configured to use different Ontology services, and

therefore, allowing for different subset of models to be exposed to end users.

4. Perform the estimation

Models, selected in Step3 are launched in Step 4, where the user can monitor the status of

the processing. The processing status is retrieved via OpenTox Task services. Different

Model, Algorithm, Dataset, and Ontology services, running on different remote locations

can be involved at this stage. If a model relies on a set of descriptors, an automatic

calculation procedure is performed, which involves launching a descriptor calculation by

remote Algorithm services. The procedure is as follows:

The Ontology service is queried to retrieve information about the independent variables,

used in the model. If no such variables are involved (e.g., in case of ToxTree models, which

rely on chemical structure only), the workflow proceeds towards model estimation. In case

of a model, based on descriptors (e.g., a regression model), the procedure is slightly more

complex, as explained below.

Each independent variable is represented as a Feature and managed via the Feature

service. Each feature has associated a web address (OWL property opentox:hasSource from

OpenTox OWL ontology), which specifies its origin. The tag could point to an OpenTox

Algorithm or Model service, in case it holds a calculated value, or point to a Dataset

service, in case it contains information, uploaded as a dataset (for example experimental

endpoint data). If the feature origin is a descriptor calculation algorithm, the web address

points to the Algorithm service, used to calculate descriptor values, and the same web

Deliverable Report

 34

address can be used again via the OpenTox Algorithm API in order to calculate descriptors

for user-specified structures. The Algorithm services perform the calculation and store

results into a Dataset service, possibly at a remote location. Then finally, a dataset with all

calculated descriptor values is submitted to the Model service. Upon estimation, Model

results are submitted to a Dataset service, which could be at a remote location, which

could be the same or different to that for the model services.

The interplay of multiple services, running on remote sites, provide a flexible means for

the integration of models and descriptors, developed by different organisations and

running in different environments. Identification of algorithms and models via web URLs

ensure the compliance with the OECD validation principle 2 of “An unambiguous

algorithm”, as well as repeatability of the results of the model building. Extensive meta

information about the algorithm and models themselves is accessible via web URLs and the

OpenTox API.

5. Display the results

The final step displays estimation results, as well as compound identification and other

related data. Initial demonstration reports in several formats can be accessed via icons on

the right hand side of the browser display.

Deliverable Report

 35

Next Steps in Development

We summarise here the next steps in our future work on this use case:

General: Improving the user interface, based on feedback from internal and external

testers. The workflow design is generally considered very intuitive and convenient for

users, although there are some concerns that too many steps may be involved.

Step 1: The user interface will be extended to provide the means for uploading files and

reusing existing search results. The related service functionality is already available via the

Dataset service.

Step 2: Plans include providing data retrieval from several third-party sources like IUCLID5

and PubChem via the standardized OpenTox Dataset service API. Communication with

IUCLID5 via web services will improve the utility of the ToxPredict application in a REACH

context.

Step 3: Future work includes solving several technical issues, in order to introduce models

from all OpenTox partners, as well as providing wrappers for third-party models, in order

to make them available via the OpenTox API and visible for the ToxPredict application.

Step 4: Task services will be extended to allow for cancelling long running estimations, as

well as to provide more detailed information about processing status.

Step 5: The web page will be extended to include information about the relevant

experimental endpoint values, retrieved from the database. The Dataset service, providing

such functionality, is already available and can be quickly integrated into the workflow. An

important functionality, that is currently missing, is inclusion of model validation statistics,

which depend on integration of the Validation service, developed in OpenTox WP5. The

Reporting service developed in WP5 will provide the means for generating reports in

REACH-compliant format (QMRF or CSA format).

Conclusions

ToxPredict is a demonstration web application, providing a user-friendly interface for

estimating toxicological hazards. It provides a front end to multiple OpenTox services,

currently integrating IDEA ontology, dataset, feature and model services with TUM

descriptor calculation and model services, and NTUA algorithm services. Future work will

include integration of other partners and third party model services, as well as the reports,

generated by the ALU-FR Validation and Reporting service. While current functionality may

appear to an end-user not much different from a stand-alone prediction application like

ToxTree, the back-end technology provides a very flexible means for integrating datasets,

models and algorithms, developed by different software technologies and organisations

and running at remote locations.

Deliverable Report

 36

4.1.1 Interaction of OpenTox services, employed in ToxPredict

This section describes visually the interaction and sequence of OpenTox services

interoperating during the different steps of the ToxPredict application execution.

Step 1 – Enter Compound

Step 2 – Structure selection

Step 3 – Model selection

OpenTox Dataset API HTTP GET
Dataset service

ToxPredict web
application

Find structure by name, registry

number, smiles InChI, structure,
substructure, similarity

Here is the list of structures

as URI links, RDF , MOL or
SMILES

text/uri-list,

application/rdf+xml,

chemical/x-daylight-smiles,

chemical/x-mdl-sdfile,…

Dataset service
ToxPredict web

application

Display structure search
results

Here is the list of

structures as URI links,

RDF , MOL or SMILES or
images

OpenTox Dataset API HTTP GET
(HTTP POST for structure editing)

text/uri-list,

application/rdf+xml,

chemical/x-daylight-smiles,

image/png,
chemical/x-mdl-sdfile

Ontology
service

ToxPredict web

application

What prediction models

are available? Is there a
model for endpoint X?

Here is the list of models

URI and related endpoints

and algorithms as SPARQL

results

HTTP GET, SPARQL query

application/sparql-results+xml

Deliverable Report

 37

Step 3 – Behind the scenes – Previously, Algorithm, Model and Feature services had

registered a list of algorithms, models and features into the Ontology service, by POSTing

the URIs of these objects.

Step 4 – Model estimation

Ontology
service

Algorithm
service

OpenTox Ontology API, HTTP POST

Model
service

Feature

service

OpenTox Ontology API, HTTP POST

OpenTox Ontology API, HTTP POST

Model service
ToxPredict

web
application

Run the selected
models

The calculation will take a while,

here is a task URI, which can be
queried for processing status

OpenTox Model API, HTTP POST

with parameter dataset URI from

step 1-2

HTTP code 202 “Accepted”

Model Task URI in HTTP Location:

header

Task service

Create a new task

Is the task completed?

OpenTox Task API, HTTP GET on Task
URI

Not Yet, but calculations are done and

the results were posted to Dataset

service, here is Task URI of the Dataset

Import

HTTP code 303 “Redirect”

Dataset Task URI in HTTP Location:

header

Is the task completed?

OpenTox Task API, HTTP GET on Task
URI

HTTP code 200 “OK”

Dataset Task URI in HTTP Location:

header

Yes , here is the Dataset URI of the
results

Task service

Deliverable Report

 38

Step 4 - Behind the scenes

Submit the results to Dataset

service

OpenTox Dataset API, HTTP

POST

Ontology
service

ToxPredict
application

Does the model make
use of descriptors?

Yes, here is a list of features and

algorithms, used to calculate
descriptors for the training set

OpenTox Ontology API, HTTP GET,
SPARQL query

application/sparql-results+xml

Dataset service OpenTox Dataset API, HTTP
GET

Are the descriptor values

for query compounds

already calculated and

available in OpenTox

database?

HTTP code 404 (Not Found)

No, not available

Algorithm

service

Task service

OpenTox Algorithm API, HTTP POST with

Dataset URI of query compounds as input

parameter

Calculate descriptors

HTTP code 202 “Accepted”

Algorithm Task URI in HTTP Location:

header Create a new task Is the task completed?

OpenTox Task API, HTTP GET on Task URI

Yes , here is the Dataset URI of the
results

HTTP code 200 “OK”

Dataset Task URI in HTTP Location:

header

Model service

Run the selected
models

OpenTox Model API, HTTP POST with

the new Dataset URI as input

parameter

Deliverable Report

 39

Step 5 – Display the results

4.2 ToxCreate Use Case

The ToxCreate use case, in contrast to ToxPredict, is aimed at researchers working in the

life sciences and toxicology, QSAR experts, people interested in machine

learning/statistics, pharmaceutical industry R&D and other related fields. It allows the

creation of a number of models using one or more algorithms. Therefore it is not as easy

to use as the ToxPredict application, as not only the algorithm has to be selected, but also

the right parameter setting needs to be explored; these parameters are algorithm-

dependent. For this decision-making, the expert has to have sound knowledge of the

algorithm they are using.

The following sequence of screenshots, show a sample session of the ToxCreate use case.

Dataset service
ToxPredict web

application

Retrieve calculation results by

using the Dataset URI,
obtained by Step 4

Here is the dataset content in

RDF, according to OpenTox.owl

and containing estimation results,

as well as compound identifiers
and available experimental data

OpenTox Dataset API HTTP
GET

application/rdf+xml

Deliverable Report

 40

1. Upload Dataset

The first step of the ToxCreate workflow enables the user to specify a model training

dataset in CSV format (this will be extended to other input means), consisting of chemical

structures (SMILES) with binary class labels (e.g. active/inactive). The file is uploaded to the

server and labelled with a user-defined name.

In contrast to ToxPredict, we here enable the user to specify his/her own training

data/endpoint. This is done in batch mode, i.e. without interactive screens to select

chemicals based on different criteria, which is convenient for expert users.

By hitting “Create model”, a QSAR model is derived. The current prototype demonstrates

Lazar models only. No model parameters can be set at this time, but future versions will

enable arbitrary OpenTox API-compliant models.

Deliverable Report

 41

2. Create and Display Model

This next screen in ToxCreate displays information about the model learned from the data

submitted in the previous step. It features status information, date and number of

compounds present in the dataset. A link leads to the complete specification of the model

in OWL-DL. In the near future, it will be possible to validate the model by means of e.g.

Cross-validation and select the most appropriate models for further evaluation.

At this point, the model is permanently stored on the server and can be used for

predictions at any time in the future.

Deliverable Report

 42

3. Select and Use Model(s) for Prediction

In this step, a chemical (specified via SMILES code) can be entered in order to predict its

chemical behaviour by arbitrary models existent on the server (note that in this way, in the

future, arbitrary combinations of model algorithms and datasets/endpoints will be

available to test the structure).

Deliverable Report

 43

4. Display Prediction Results

Step 4 displays the predictions made by the selected models from the previous step along

with an image of the predicted structure. Based on the selections made in the previous

screen, the expert user may predict the same structure by a variety of algorithms for the

same dataset/endpoint and compare the predictions.

Conclusions

Together with model validation available from step 2, users will be able to select

appropriate models with adjusted parameters beforehand. By predicting a variety of related

endpoints, instead of just one, combined with arbitrary models at the same time,

ToxCreate enables free modelling exploration along different dimensions.

Deliverable Report

 44

4.3 Validation Use Case: Building and Validating a Model

Another important prototyped use case, besides the end user oriented applications

described above (see section 4.1 and 4.2), is a training test set validation. This task can be

executed using the validation web service prototype13 (developed at Albert Ludwig

University (ALU-FR)) along with additional partner web services for algorithms, e.g., the

Lazar and Fminer algorithms14 (provided by In Silicio Toxicology (IST)). These applications

outline a successful implementation of the OpenTox API, and show interoperability of

various web services, located at different locations. There is no graphical user interface

provided yet, as this resource is to be executed by directly using REST operations. In the

example described below, the command line tool curl15 is used. In the near future,

validation routines like this will be fully integrated into the ToxCreate application.

Two validation examples follow in sections 4.3.1 and Error! Reference source not found.

below. The first section outlines the validation workflow when validating the Lazar

classification algorithm16 (provided by In Silicio Toxicology (IST)). The second section

shows the evaluations of different regression models (provided by TUM) applied to a state-

of-the-art QSAR dataset (provided by IDEA).

13 see OpenTox Deliverable 5.1. for more details

14 github.com/helma/opentox-algorithm

15 curl.haxx.se

17 Actually, a task object is returned first, while the process is running in the background. This is

done for all time-consuming processes. We omit it in the description for simplicity.

http://github.com/helma/opentox-algorithm
http://curl.haxx.se/

Deliverable Report

 45

4.3.1 Validating the Lazar algorithm

Figure 4.1: Workflow diagram illustrating the training test set validation of a prediction algorithm

The goal of this use case is to evaluate a prediction algorithm: the algorithm trains a model

on a training dataset, and then predicts the compounds of a test dataset towards a certain

endpoint. The validation result reflects how well the model performed. The workflow for

the training test set validation is illustrated in Figure 4.1. Web services are displayed as

rectangles; the three key POST REST operations are symbolized as dashed lines, while solid

lines visualize data flow operations. The use case can be divided into 10 steps:

 Step 1: The user invokes the validation with a POST REST operation towards the

validation web service, with parameters „algorithm_uri‟, „training_dataset_uri‟,

„test_dataset_uri‟, „prediction_feature‟, and „algorithm_params‟:

curl -X POST –d algorithm_uri=http://webservices.in-silico.ch/test/algorithm/lazar -d

training_dataset_uri=http://opentox.informatik.uni-freiburg.de/dataset/2 -d

test_dataset_uri=http://opentox.informatik.uni-freiburg.de/dataset/3 -d

prediction_feature=http://www.epa.gov/NCCT/dsstox/CentralFieldDef.html#ActivityOutcome_CPDBAS_

Hamster -d algorithm_params="feature_generation_uri=http://webservices.in-

silico.ch/test/algorithm/fminer" http://opentox.informatik.uni-freiburg.de/validation

This is the only necessary REST call performed by the user. The subsequent steps

are processed internally.

http://webservices.in-silico.ch/test/algorithm/lazar
http://opentox.informatik.uni-freiburg.de/dataset/2
http://opentox.informatik.uni-freiburg.de/dataset/3
http://www.epa.gov/NCCT/dsstox/CentralFieldDef.html#ActivityOutcome_CPDBAS_Hamster
http://www.epa.gov/NCCT/dsstox/CentralFieldDef.html#ActivityOutcome_CPDBAS_Hamster
http://opentox.informatik.uni-freiburg.de/validation

Deliverable Report

 46

 Step 2: The validation web service starts the model building process, by

automatically performing a POST REST operation addressed to the algorithm web

service:

curl -X POST -d dataset_uri=http://opentox.informatik.uni-freiburg.de/dataset/2 -d

prediction_feature=http://www.epa.gov/NCCT/dsstox/CentralFieldDef.html#ActivityOutcome_CPDBAS_

Hamster -d feature_generation_uri=http://webservices.in-silico.ch/test/algorithm/fminer

http://webservices.in-silico.ch/test/algorithm/lazar

The algorithm web service fetches the training data and builds a model (Step 3 and

4). This use case includes a feature generation process that is omitted in the

diagram: The Fminer service is used to mine structural features that occur in the

compounds of the training dataset. The features are stored as a new dataset in the

dataset web service, which is required to build the Lazar model. Finally, the

algorithm web service returns the model URI as result17.

 Step 5: The validation web service uses the returned model URI to predict the

compounds in the validation test set:

curl -X POST –d dataset_uri=http://opentox.informatik.uni-freiburg.de/dataset/3

http://webservices.in-silico.ch/test/model/<id>

The model web service therefore fetches the test compounds and makes

predictions. The predictions are stored in a new dataset (Steps 6 and 7)

Steps 8 – 10: The validation web service retrieves the predictions from the dataset web

service, and computes the validation statistics. In order to save hard-disk space, the

prediction dataset can be deleted afterwards. This is an optional setting which is not

included yet. Finally, the validation object is available to the user.

4.3.2 Validate regression models

The Fathead Minnow Acute Toxicity18 dataset is a well known dataset in the QSAR

community, generated by the U.S. Environmental Protection Agency19. Russom et al20

developed an expert system for this empirically-derived dataset to predict modes of

actions from chemical structures.

We applied and evaluated different regression models, to see how well they could predict

the LC50 values that were experimentally determined for the chemical compounds in the

17 Actually, a task object is returned first, while the process is running in the background. This is

done for all time-consuming processes. We omit it in the description for simplicity.

18 http://www.epa.gov/ncct/dsstox/sdf_epafhm.html

19 http://www.epa.gov

20 http://www.epa.gov/nhrlsup1/comptox/dsstox/Citations/ETC_Russom_1997_v16p948.pdf

http://opentox.informatik.uni-freiburg.de/dataset/2
http://www.epa.gov/NCCT/dsstox/CentralFieldDef.html#ActivityOutcome_CPDBAS_Hamster
http://www.epa.gov/NCCT/dsstox/CentralFieldDef.html#ActivityOutcome_CPDBAS_Hamster
http://webservices.in-silico.ch/test/algorithm/lazar
http://webservices.in-silico.ch/test/model/%3cid

Deliverable Report

 47

dataset. Therefore, we computed 50 numerical descriptors using the computational

chemistry library JOELIB221. The dataset has been randomly split into a training dataset22

including 389 structures, and a test dataset23 with 193 structures. The datasets can be

accessed at the ABMIT REST24 web service, provided by partner IDEA. Partner TUM

implemented web interfaces to various prediction algorithms25 from the machine learning

tool WEKA26 from which we used a Nearest Neighbour algorithm for regression27, M5P

regression trees28 and a Gaussian Processes learning algorithm29.

As in the above section we performed a training test split validation, to first build a model

on the training dataset, and then predict the LC50 values of compounds in the training

dataset:

curl -X POST -d algorithm_uri=" http://opentox.informatik.tu-muenchen.de:8080/OpenTox-
dev/algorithm/<regression_alogrithm>" \

 -d training_dataset_uri="http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/639" \

 -d test_dataset_uri="http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/640" \

 -d prediction_feature="http://ambit.uni-plovdiv.bg:8080/ambit2/feature/264185" \

 http://opentox.informatik.uni-freiburg.de/validation

The validation results of these operations show performance measures such as root mean

square error and r², providing indicators on the quality of the used models.

4.4 Testing Results

The testing of the web services and use cases is done on several different levels. The first

level is the stress testing of the web services to identify potential performance decreases,

the second level is manual API compliance testing of the web services, and finally the third

and last level is the manual internal and external testing of the two application use cases.

21 http://www.ra.cs.uni-tuebingen.de/software/joelib/introduction.html

22 http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/639

23 http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/640

24 http://ambit.uni-plovdiv.bg:8080/ambit2/

25 http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm

26 www.cs.waikato.ac.nz/ml/weka/

27 http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/kNNregression

28 http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/M5P

29 http://opentox.informatik.tu-muenchen.de:8080/OpenTox-dev/algorithm/GaussP

http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/639
http://ambit.uni-plovdiv.bg:8080/ambit2/dataset/640

Deliverable Report

 48

4.4.1 Server Testing

For testing of the availability of the web services, the program SmokePing30 has been set

up. SmokePing allows keeping track of latency problems for individual web services and

also allows email alerts to be sent in case of sudden server breakdowns. Figure 4.1 shows

the graphical output for the IDEA web services.

Using this availability testing, we have already identified some performance problems with

the web services at ALU-FR and IST as well with SL's server network connectivity. The

performance problems for ALU-FR and IST are currently being resolved. To enable SL a

proper web service, hosting provided by ALU-FR for SL services will be addressed within

the next development iteration.

SL's server network connectivity was suffering from high latency and substantial packet

loss (up to 60%), the network connectivity has to be either radically improved by some

means or (if this proves to be difficult or even impossible), then any software, developed

by SL, should be deployed in a more network-friendly location, e.g. somewhere in Europe.

In December 2009, ALU-FR has given SL access to a dedicated server in Germany.

30 oss.oetiker.ch/smokeping/index.en.html

http://oss.oetiker.ch/smokeping/index.en.html

Deliverable Report

 49

Figure 4.1 An example output of SomePing for IDEAs webservices31

4.4.2 API testing

In December 2009, we performed a web service API test. The test showed a general lack of

API compliance and interoperability. However, having performed this test, we could

prioritize on web services development and have already addressed several of the

problems identified.

In the following list, we present the major findings of the test in December and the counter

measures taken or state what the current status within the OpenTox Framework is.

31 ambit.uni-plovdiv.bg/cgi-bin/smokeping.cgi?target=IDEA

http://ambit.uni-plovdiv.bg/cgi-bin/smokeping.cgi?target=IDEA

Deliverable Report

 50

 A number of issues of various severity in practically all services and

implementations, which have been identified were reported to the respective

developers and partially or fully resolved;

 Interoperability between different implementations had been successfully

demonstrated in one case only in December 2009. Now, in March 2010, more

services are able to interoperate, such as IDEA, TUM, and NTUA as well as between

ALU-FR and IST. Interoperability between the validation web services (ALU-FR) and

the IDEA, TUM, and NTUA services has also been established in a couple of cases;

 At the time, the model building procedures seemed to be quite fragile, subject to

frequent failures, lack of interoperability, and/or were not fully API 1.1-compliant.

These issues have been addressed and have been partially resolved;

 IDEA's implementation covers the largest API subset so far and exhibits reasonable

interoperability between Compound, Feature, Dataset, Algorithm, Model and Task

services in the framework of a single implementation;

 The implementation of the Validation service is ongoing at ALU-FR and more or less

in sync with other developments;

 IBMC's OpenTox service implementation was left out of the SmokePing

measurements, because it was not API 1.1 compliant. This issue has not yet been

resolved.

To summarize, we are continuously and rigorously testing the interoperability between the

individual OpenTox web services as well as API compliance.

4.4.3 Use case testing

Our prototype use cases, ToxModel and ToxPredict, were tested and evaluated internally as

well as externally by a third party. The internal testing was performed twice, as the testing

started at a very early stage of the two use cases being somewhat operational. The second

internal test was then held one week later, where already some of the issues were resolved

(see below). The external testing was performed on the 23rd of February 2010. To

document the results of all tests, we designed a Use Case Beta Testing Report Template

(see 6. Appendix). Using this template, testers can fill in their experience with the

prototype with regards to functionality, usability, and design and allow furthermore for

feedback with regards to possible improvements and bug reporting.

ToxPredict

The internal tester had several issues with the prototype, which we present here as well as

measures to address the issues raised:

Deliverable Report

 51

 Structures not found and no proper message displayed.

o This is currently being fixed and will be available first week of March 2010

 File upload was missing during testing session.

o This is available since Feb 26 2010

 No explanation of reliability of estimates in final report.

o This is hard to provide, without integration with the validation service,

applicability domain and mechanistic interpretation by human expert. These

steps are planned as next developments.

 Initial version, tested internally was providing endpoint and model selection via

hierarchy of endpoints.

o This seems to be inconvenient for the user and was replaced with a flat list of

models and related endpoints.

 Result reports are provided via different formats (SDF, PDF, CSV) and accessible via

small icons.

o This seems to be not always intuitive and will be redesigned.

 The formatting and content of the result reports need to be synchronized with

REACH-related report formats such as QMRF and Chemical Safety Assessment.

Within the external testing the following issues were raised (for clarity we include the

actual question from the questionnaire):

 Input chemical structure as compound name: ”What is the naming convention used?”

o This is free text search, based on multiple synonyms from multiple sources,

available in the database. We are currently working on integration of further

details and guidance in the ToxPredict GUI.

 Input chemical structure as CAS number: "No issues experienced but would be

helpful to know the scope of the inventory underlying the CAS database and the

extent to which it has been curated”

ECHA pre-registration list; curation explained in OpenTox D3.3 report. We

will be subsequently introducing this information into the ToxPredict GUI.

 Input chemical structure as arbitrary string: “Not sure what this means?”

o Free text search (guidance is being added).

 Verify selected structure(s): “But what purpose does this serve? If there were some

editing functionality to modify a structure rather than clicking back and having to

start over then that would be useful”

Deliverable Report

 52

o This is due to yet unimplemented functionality, and will allow to

select/deselect structures, as well as launching structure diagram editor to

modify structures, if appropriate.

 Select a relevant model from a list of available models: “No supporting information

of the models. The excel, PDF icons are confusing – could they be omitted until you

reach the display results section?”

o Excel and PDF icons provide exactly supporting information - e.g. training

dataset. Including more information about models is under development -

this already exists in the corresponding web services, but is not yet exposed

via the ToxPredict front end. Redesign of the page will be considered as well.

 Apply model(s) (make a prediction(s)): “Can‟t go back and re-select some more

models, you have to start the whole process again.”

o Already fixed in current version.

 Apply model(s) (make a prediction(s)): “What is the OpenTox model – there is no

endpoint associated with it?”

o During the testing session, it was a test model, generated by OpenTox TUM

services, which has not been yet assigned an entry from the endpoint

ontology and was serving only as a demo for integration between services,

developed by different partners and running on remote locations. We will

ensure that sufficient details are available in future for every model presented

in the ToxPredict GUI.

 Comment: “Software was easy to apply to my specific situation, but at present does

not offer any additional benefits over using the software as standalone”

o The demo software includes mostly ToxTree models, with additional ones as

pKa estimation and the demo regression model (TUM) for aquatic toxicity,

thus the perception is not much different than ToxTree, for the time being.

However, the software technology used differs drastically and allows

inclusion of models, which are available from several partners, on remote

locations and by different software technologies. This was not sufficiently

demonstrated and not evident for the tester. We will need to design a demo

case shortly to demonstrate the availability and advantages of integration of

different models.

Overall, we also found that the user would like to have a progress bar during the time of

computation, including the possibility to stop a process. We are currently considering an

API extension to allow such functionality. Furthermore, the reporting format and content

display need improvement.

Deliverable Report

 53

ToxCreate

This use case has also been tested twice internally and once externally. At the time of

testing, the ToxCreate prototype was still in an early stage and the external tester found

that it was hard to judge this workflow, as at the time only very limited functionality was

available. However, the general impression was “General idea is good but implementation

and functionality are too embryonic. Expectations are not met”.

As with the internal tester, some issues were raised and are being addressed:

 Train a model: “I made a copy of the dataset with some deliberately corrupted fields,

and ran through the same sequence, but the results were the same as before with

no mention of my deliberate data errors”

o This has been addressed and resolved.

 Train a model: “I uploaded the Hamster test file CSV file with a few corrupted data

values (a few numbers changed to letters). On clicking “Create Model”, it simply

returned to same page saying upload CSV file (ideally, it should provide a more

explicit error message, or continue and ignore the erroneous values).

o We are addressing the problem with missing error messages and warnings as

well as improving the online documentation.

 Train a model: “I made a copy of the dataset having deleted all except one single

calibration compound, and ran through the same sequence, but the results were the

same as before with no mention of any errors.”

o This has been addressed. Now a warning appears if only a few training

compounds are supplied.

 Train Model: “I clicked “Create Model”, the page immediately changed to the

“Predict” page, but there was no indication if anything had happened or if it was still

calculating (e.g. no spinning cursor).”

o This has been addressed and a message is prompted that the process has

been started. This page is then refreshed every 15 seconds until the

completed message appears.

 Make predictions: “When I entered a smiles string into the “Enter a compound

identifier” box and clicked “Predict”, a picture of the correct structure appeared with

a similar error message as above <<test6: not available>>.”

o This has been resolved. Currently the user has to select an available model,

enter a SMILES string and is able to predict the activity for the entered

compound using the just created model.

Deliverable Report

 54

 Lack of SDF file support

o We will resolve this at a later stage of the development cycle, using a Ruby –

OpenBabel SDF converter. However, currently the Ruby bindings for

OpenBabel are not fully operational.

Testing Summary

At the time of the first internal and external tests, functionality was still very limited and

documentation still missing. However, with these use cases, some interoperability has

been achieved and is ongoing work. We are planning to have additional alpha and beta

testing employing a number of third parties during Spring 2010.

5. Discussion

5.1 Further Working Directions

In future OpenTox developments we will extend the OpenTox Framework substantially by:

 Achieving improved and complete interoperability between all OpenTox web

services and specifically within and between the ToxPredict and ToxCreate

applications;

 Extension of the Framework to incorporate models and data related to data mining

and in vitro assays probing mechanistic pathways;

 Extension of the Framework to incorporating biological models and data related to

probing kinetics and exposure prediction;

 Provision of additional graphical user interfaces and applications, by incorporating

the results of continuous internal and external testing procedures;

 Extending the employed ontologies to align with current standards such as the Blue

Obelisk and OBO Foundry ontologies, allowing the full description of predictive

toxicology algorithms, including references, parameters and default values;

 Addition of QMRF reporting facilities, by producing pre-filled skeleton QMRF

reports, which are then editable within the QMRF Editor32;

32 http://ambit.sourceforge.net/qmrf/jws/qmrfeditor.jnlp

http://ambit.sourceforge.net/qmrf/jws/qmrfeditor.jnlp

Deliverable Report

 55

 Integration of authentication and authorization into the Framework, allowing for

confidential data to be integrated as well as allowing restricted access to certain

datasets;

 Organisation of workshops, seminars and tutorials to communicate the OpenTox

Framework to other interested parties, and offering algorithm developers as well as

toxicological risk assessors the possibility to participate in the community

approach. (For example, a one day workshop “Development of Predictive Toxicology

Applications” will be held alongside the EuroQSAR 2010 conference in Rhodes in

September 2010:

www.opentox.org/data/blogentries/public/opentoxworkshoprhodes2010)

5.2 Conclusions

The OpenTox Framework offers a standardized interface to state-of-the art predictive

toxicology algorithms, models, datasets, validation and reporting facilities on the basis of

RESTful web services33 and guided by the OECD Principles, REACH legislation and user

requirements.

The Framework supports rapid application development and extensibility by using well-

defined ontologies, allowing simplified communication between individual components.

Two user-centered prototype applications, ToxCreate and ToxPredict, show the potential

impact of the framework regarding high-quality and consistent structure-activity

relationship modeling of REACH relevant endpoints. The applications have been made

available publicly on the Web (www.opentox.org/toxicity-prediction) providing immediate

access to the applications as they have been developed.

ToxPredict satisfies a common and important situation for a user wishing to evaluate the

toxicity of a chemical structure. The user does not have to cope with many current

challenges such as the difficulty of finding or using existing data or the complications of

creating and using complicated computer models. Because of the extensible nature of the

standardised design of the OpenTox Framework, many new datasets and models from

other researchers may be easily incorporated in the future, both strengthening the value

offered to the user and ensuring that research results are not left languishing unused in

some isolated resource not accessible to the user. The approach offers the potential to be

extended to the complete and easy-to-use generation of reporting information on all

33 Fielding, R.T., Architectural Styles and the Design of Network-based Software Architectures,

 Ph.D. dissertation, in University of California, Irvine. 2000

http://www.opentox.org/data/blogentries/public/opentoxworkshoprhodes2010
http://www.opentox.org/toxicity-prediction

Deliverable Report

 56

REACH-relevant endpoints based on existing available scientific research results, and

indications when additional experimental work is required, thus satisfying currently unmet

industry and regulatory needs.

ToxCreate provides a resource to modellers to build soundly-based predictive toxicology

models, basely solely on a user-provided input toxicology dataset that can be uploaded

through a web browser. The models can be built and validated in an automated and

scientifically sound manner, so as to ensure that the predictive capabilities and limitations

of the models can be examined and understood clearly. Models can subsequently be easily

made available to other researchers and combined seamlessly into other applications

through the OpenTox Framework.

Deliverable Report

 57

6. Appendix

Example Beta Testing Report Template

1 General Instructions

Please complete the ToxPredict Beta Test Tasks described below. To run the ToxPredict software you would

need a web browser (a recent version of Firefox or Internet Explorer) and a network connection to Internet.

Please answer the questions on the attached form, either by hard copy, or by editing an electronic copy of this

document. Please return your feedback to Vedrin Jeliazkov vedrin.jeliazkov@gmail.com. With your permission,

we may contact you occasionally during the course of the beta testing to solicit interim feedback. You might

also want to register at the OpenTox site34 and provide further feedback through the test case development

issue tracker35.

The ToxPredict software implements a prototype use case of the OpenTox framework, which enables end users

to run existing endpoint-specific models on a given compound (or dataset) and get model predictions. The

main steps of the workflow are as follows:

1. Select input compound (enter chemical name, registry identifier (e.g. CAS, EINECS), SMILES, InChI,

arbitrary keyword, SMARTS or draw molecule in molecular editor);

2. Select specific endpoint (e.g. Human Health Effects / Carcinogenicity);

3. Select one or more models, available for this particular endpoint (e.g. ToxTree: Benigni/Bossa rules for

carcinogenicity and mutagenicity);

4. Apply selected model(s);

5. View and/or retrieve the resulting report, available in various formats, e.g. HTML, SDF, CML, SMI, PDF,

XLS, ARFF or RDF.

2 Beta Testing Objectives

The main objectives of this beta testing exercise are:

 To evaluate ToxPredict‟ technical capabilities and scientific value;

 To evaluate ToxPredict‟ ease of use and interactivity;

 To evaluate the end user documentation;

 To identify errors/bugs;

 To compile and prioritise a wish list of missing features, to be implemented in subsequent versions of

the OpenTox framework.

3 Beta Testing Tasks

1. Complete Part-A: Identification (provide your name and contact details, web browser type/version and

time period when the testing has been performed).

34 www.opentox.org/join_form

35 www.opentox.org/dev/testing/testcasedevelopment/testcasedevelopmentissuetracker

mailto:vedrin.jeliazkov@gmail.com
http://www.opentox.org/join_form
http://www.opentox.org/dev/testing/testcasedevelopment/testcasedevelopmentissuetracker

Deliverable Report

 58

2. Open the following URL in your web browser http://93.123.36.100:8180/ToxPredict

3. Proceed with functional evaluation of ToxPredict by following as many variants of the provided

workflow as possible. These activities aim to evaluate the software‟s basic ability to generate the

expected results, in the way you need them. Report your findings in Part-B: Functional Evaluation.

4. Complete Part-C: Overall Comments and Usability Evaluation. This section asks you to rate various

aspects of the software using a 5-point scale.

5. List any bugs or problems in Part-D: Specific Bugs and Problems Noted as you proceed.

6. Please answer any other relevant questions listed in Part-E: Other Generic Topics.

4 Known ToxPredict Problems

1. Bugs/usability problems:

a. Workflow navigation doesn‟t work always as expected and is subject to improvement;

b. The overall GUI design is subject to improvement.

2. Missing features:

a. The integrated online help doesn‟t provide sufficiently detailed guidance;

b. Support for batch processing of datasets is under development;

c. Support for file upload is under development;

d. Support for molecular structure drawing is under development;

e. Support for SMARTS searching is under development;

f. Integrated descriptor calculation is under development;

g. Model integration is under development (only ToxTree and pKa models are fully supported at

the time of this writing);

h. Models are available only for a subset of endpoints.

http://93.123.36.100:8180/ToxPredict

Deliverable Report

 59

5 Part-A: Identification

Your Name

Your Organisation

Your Phone number

Your E-mail address

Used web browser (type/version)

Time period when the testing has been performed

6 Part-B: Functional Evaluation

Test Case ID Function Tested?

(yes/no)

Comments, Ideas and Issues

ToxPredict -01 Input chemical structure as SMILES

ToxPredict -02 Input chemical structure as MOL

ToxPredict -03 Input chemical structure as SDF

ToxPredict -04 Input chemical structure as InChI

ToxPredict -05 Input chemical structure as compound name

ToxPredict -06 Input chemical structure as CAS number

ToxPredict -07 Input chemical structure as EINECS number

ToxPredict -08 Input chemical structure as SMARTS

ToxPredict -09 Input chemical structure as arbitrary string

ToxPredict -10 Input chemical structure through the integrated

molecular structure editor

ToxPredict -11 Select an endpoint from a list of available

endpoints

ToxPredict -12 Select a relevant model from a list of available

models for a given endpoint

ToxPredict -13 Apply model(s) (make a prediction(s))

ToxPredict -14 Follow the progress of a prediction task

ToxPredict -15 View predictions and experimental data (HTML

format)

ToxPredict -16 Retrieve resulting report in SDF format

ToxPredict -17 Retrieve resulting report in CML format

ToxPredict -18 Retrieve resulting report in SMI format

ToxPredict -19 Retrieve resulting report in PDF format

ToxPredict -20 Retrieve resulting report in CSV format

Deliverable Report

 60

Test Case ID Function Tested?

(yes/no)

Comments, Ideas and Issues

ToxPredict -21 Retrieve resulting report in ARFF format

ToxPredict -22 Retrieve resulting report in RDF format

7 Part-C: Overall Comments and Usability Evaluation

Usability Question Rating Scale

1 – Strongly Disagree

2 – Somewhat Disagree

3 – Neither Agree, Nor Disagree (No Opinion)

4 – Somewhat Agree

5 – Strongly Agree

Specific Comments on Rating

Overall

This software is useful to me now, or it

will be in the near future

System output and visualization are

useful and meet my needs

Software has the capabilities I need

(note any exceptions)

General impression is good (why?)

Software was easy to apply to my

specific situation

Data entry effort is manageable

Technical Content

Appropriate technical and scientific

basis is used

Uses proper terminology

Performs calculations correctly

Toolbars, menus, commands and

options are appropriate

Labels and terms are accurate and easy

to understand (if not, what would you

prefer?)

Data formats are useful (if not, what

would you prefer?)

I entered my own data and received the

expected results

Boundary values (largest and smallest

chemical samples) were handled

correctly

Deliverable Report

 61

Usability Question Rating Scale

1 – Strongly Disagree

2 – Somewhat Disagree

3 – Neither Agree, Nor Disagree (No Opinion)

4 – Somewhat Agree

5 – Strongly Agree

Specific Comments on Rating

Software Operation

Trouble-free operation

Easy to navigate within the software

Consistent and logical flow in using the

software

Easy to find what you are looking for

Software works as expected (uses

standard user interface features)

Software works well within its family of

software applications (if known)

Files import and export to other needed

applications

Prints properly to a printer

Documentation

Clearly describes software purpose

Organization is clear and logical

Examples show how to use the main

features (please list any features

needing more explanation or examples)

Tables, graphs & figures provide

sufficient guidance through major

software options

Do error messages clearly direct the

user to a solution?

On-line help: was it easy to find what

you wanted?

Included necessary technical support

information

Appearance

Colours, symbols, and graphics are

legible and pleasing

Looks professional

Correct spelling & grammar

Application windows have consistent

look and feel

Deliverable Report

 62

8 Part-D: Specific Bugs and Problems Noted

Test Case ID (e.g. ToxPredict-01,

ToxPredict-02, …, ToxPredict-xy)

Nature of Problem Full List of Steps to Reproduce the

Problem

9 Part-E: Other Generic Topics

Please comment on the following (if relevant):

 scientific value of algorithms included

 speed of user interface interactivity and of calculations

 order of screens and steps, and number of steps to complete an action

 compatibility of the software with existing workflows

 organization of menu items

 quality of written explanations

 terms or abbreviations used

 annoying or frustrating experiences

