

Deliverable D1.1

Initial requirements,

standards and APIs

Grant Agreement Health-F5-2008-200787

Acronym OpenTox

Name An Open Source Predictive Toxicology Framework

Coordinator Douglas Connect

Deliverable Report

 2

Contract No. Health-F5-2008-200787

Document Type: Deliverable Report

WP/Task: WP1 / D1.1

Name Initial requirements, standards and APIs

Document ID: OpenTox Deliverable Report WP1-D1.1

Date: Feb 28, 2009

Status: Final Version

Organisation: IST

Contributors Christoph Helma

Nicki Douglas

Barry Hardy

David Gallagher

Nina Jeliazkova

Stefan Kramer

IST

DC

DC

DG

IDEA

TUM

Distribution: Public

Purpose of Document: To document results for this deliverable

Document History: 1 – First draft sent to all partners on 13 Feb 2009

 2 – Revised version 25 Feb 2009

 3 – Final version submitted 28 Feb 2009

 4 – Updated version with updated links 24 Feb 2010

Deliverable Report

 3

Table of Contents

Table of Figures .. 4

1 Summary .. 5

2 Introduction ... 6

3 Evaluation of common use-cases for toxicological end users, data providers,
(Q)SAR model developers and algorithm developers .. 6

4 Evaluation of current standards that are relevant for the OpenTox framework 6

4.1 Standards that are relevant for OpenTox ... 6

4.2 Minimum Information Standards for Biological Experiments ... 7

4.3 Toxicity Data ... 7

4.4 Validation .. 7

4.4.1 Algorithm Validation.. 7

4.4.2 (Q)SAR Validation (Model Validation) ... 7

4.5 Reports .. 7

5 Initial specification of requirements and standards for the OpenTox framework . 9

5.1.1 Prediction .. 9

5.1.2 Descriptor Calculation ... 10

5.1.3 Data Access ... 11

5.1.4 Report Generation ... 13

5.1.5 Validation .. 13

5.1.6 Integration ... 13

5.2 Architecture ... 14

5.2.1 System overview .. 14

5.2.2 Main description .. 15

5.2.3 User Interface .. 19

5.3 Element Catalog .. 20

5.3.1 Elements and their properties .. 20

5.3.2 Element interfaces ... 21

5.3.3 Interface identity ... 21

5.3.4 Data type definitions ... 22

5.3.5 Exception definitions ... 22

5.3.6 Variability provided by the interface .. 22

5.3.7 Quality attribute characteristics of the interface .. 22

Deliverable Report

 4

5.3.8 Element requirements ... 22

5.3.9 Rationale and design issues .. 22

5.3.10 Usage guide ... 22

5.4 Context diagram ... 22

5.5 Variability guide .. 22

5.6 Architecture background ... 23

5.6.1 Design rationale .. 23

5.6.2 Analysis of results ... 23

5.7 Glossary of terms .. 24

5.8 Other information .. 24

6 Definition of APIs for the database, algorithm and validation interface.............. 25

7 Conclusions .. 33

8 Appendix A: Use Cases Questionnaire with Summary of Responses 33

9 Appendix B: Representational State Transfer Architecture 33

Table of Figures

Figure 1: Descriptor Calculation Component ... 26

Figure 2: Modeling Component ... 27

Figure 3: Similarity Component ... 28

Figure 4: Data Access Component... 29

Figure 5: Feature Selection Component ... 30

Figure 6: Molecule Representation .. 31

Figure 7: OpenTox Components and InterActions ... 32

Deliverable Report

 5

1 Summary

A use-case questionnaire was created and sent to potential users of the OpenTox framework. Responses were

collected and summarized.

Current standards that are relevant for OpenTox were collected in the developers’ area of the OpenTox website

(www.opentox.org/dev). This list will serve as a reference for OpenTox developers and will be continuously

updated.

To gain a general overview, a list of existing software from OpenTox partners was collected in the developers’

area. This list will evolve into an inventory of OpenTox components and will provide high level documentation

and dependency tracking.

Extensive discussions about the architecture of the OpenTox framework were carried out on the OpenTox

forums and the general agreement was that OpenTox will be a platform-independent collection of components

that interact via well defined interfaces. The preferred form of communication between components will be

through web services.

A set of minimum required functionalities for OpenTox components of various categories (prediction,

descriptor calculation, data access, validation, report generation) was published on the developer web pages.

These propositions are the subject of further discussions and revisions to create stable application

programming interface definitions.

http://www.opentox.org/dev

Deliverable Report

 6

2 Introduction

OpenTox is an open source project and we are trying to follow the best practices of open source project

management. This means that source code, technical discussions and documents are open to the general

public and interested parties can participate in development if they have registered

(http://opentox.org/join_form) for access to the OpenTox developers’ area (http://opentox.org/dev)

Confidential information (e.g. non-anonymized responses to questionnaires, administrative documents) is

available in the OpenTox partner area.

3 Evaluation of common use-cases for toxicological end users, data providers,

(Q)SAR model developers and algorithm developers

A use-case questionnaire was created and sent to 20 potential users of the OpenTox framework. The list of the

questions included as well as results received so far are summarized in Appendix A. Up to now there has been

no general converging trend toward a specific type of use case among potential OpenTox users. This may be

due to the relatively low number of responses received so far, but it may also indicate that we will need to

provide a great flexibility with the OpenTox framework to meet individual requirements. To obtain a larger

number of responses we are planning to extend the number of participants and to use web-based

questionnaire forms for easier data entry and evaluation (http://www.opentox.org/toxicity-

prediction/userinput).

4 Evaluation of current standards that are relevant for the OpenTox framework

Current standards that are relevant for OpenTox have been gathered and uploaded to the Framework

Description page in the developers’ area for ongoing reference. This list will serve as a reference for OpenTox

developers and will be continuously updated.

The most important standards for OpenTox at the current state are ontology-related. The suitability of ToxML

and IUCLID5 templates is currently being evaluated by the database Work Package (WP3); see the detailed

discussion in the deliverable 3.1 report).

4.1 Standards that are relevant for OpenTox

 Minimum Information Standards for Biological Experiments

(http://en.wikipedia.org/wiki/Minimum_Information_Standards)

 Toxicity Data

 Validation

 Algorithm Validation

 (Q)SAR Validation (Model Validation)

 Reports

http://opentox.org/join_form
http://opentox.org/dev
http://www.opentox.org/toxicity-prediction/userinput
http://www.opentox.org/toxicity-prediction/userinput
http://en.wikipedia.org/wiki/Minimum_Information_Standards
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#Toxicity-Data
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#Validation
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#Algorithm-Validation
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#QSAR-Validation-Model-Validation
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#Reports

Deliverable Report

 7

4.2 Minimum Information Standards for Biological Experiments

(http://en.wikipedia.org/wiki/Minimum_Information_Standards)

Example standards and formats:

 Minimum Information for Biological and Biomedical Investigations (MIBBI)

http://mibbi.org/index.php/Main_Page

 Functional Genomics Experiment (FuGE) http://fuge.sourceforge.net/

 MAGE http://www.mged.org/index.html, MIAPE http://www.psidev.info/index.php?q=node/91, ...

 Predictive Model Markup Language (PMML) http://www.dmg.org/pmml-v3-0.html

4.3 Toxicity Data

 DSSTox http://www.epa.gov/ncct/dsstox/

 ToxML http://www.leadscope.com/toxml.php

 PubChem http://pubchem.ncbi.nlm.nih.gov/

 OECD Harmonised Templates

http://www.oecd.org/document/13/0,3343,en_2649_34365_36206733_1_1_1_1,00.html

 IUCLID5 templates http://iuclid.echa.europa.eu/index.php?fuseaction=home.format

 Standard for Exchange of Non-clinical Data (SEND) e.g., see

http://www.cdisc.org/models/send/v2.3/index.html and

http://www.pointcross.com/pharma/sendit.htm

4.4 Validation

4.4.1 Algorithm Validation

 common best practices such as k-fold cross validation, leave-one-out, scrambling

4.4.2 (Q)SAR Validation (Model Validation)

 OECD Principles http://www.oecd.org/dataoecd/33/37/37849783.pdf

 QSAR Model Reporting Format (QMRF) http://qsardb.jrc.it/qmrf/help.html

 QSAR Prediction Reporting Format (QPRF) http://ecb.jrc.it/qsar/qsar-

tools/qrf/QPRF_version_1.1.pdf

4.5 Reports

 REACH Guidance on Information Requirements and Chemical Safety Assessment

 http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm

http://en.wikipedia.org/wiki/Minimum_Information_Standards
http://mibbi.org/index.php/Main_Page
http://fuge.sourceforge.net/
http://www.mged.org/index.html
http://www.psidev.info/index.php?q=node/91
http://www.dmg.org/pmml-v3-0.html
http://www.epa.gov/ncct/dsstox/
http://www.leadscope.com/toxml.php
http://pubchem.ncbi.nlm.nih.gov/
http://www.oecd.org/document/13/0,3343,en_2649_34365_36206733_1_1_1_1,00.html
http://iuclid.echa.europa.eu/index.php?fuseaction=home.format
http://www.cdisc.org/models/send/v2.3/index.html
http://www.pointcross.com/pharma/sendit.htm
http://www.oecd.org/dataoecd/33/37/37849783.pdf
http://qsardb.jrc.it/qmrf/help.html
http://ecb.jrc.it/qsar/qsar-tools/qrf/QPRF_version_1.1.pdf
http://ecb.jrc.it/qsar/qsar-tools/qrf/QPRF_version_1.1.pdf
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm

Deliverable Report

 8

o Part F - Chemicals Safety Report

http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_part_f

_en.pdf?vers=30_07_08

o Appendix Part F

http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_appe

ndix_part_f_en.pdf?vers=30_07_08

http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_part_f_en.pdf?vers=30_07_08
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_part_f_en.pdf?vers=30_07_08
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_appendix_part_f_en.pdf?vers=30_07_08
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_appendix_part_f_en.pdf?vers=30_07_08

Deliverable Report

 9

5 Initial specification of requirements and standards for the OpenTox

framework

Existing software from OpenTox partners was collected in the developers’ area (http://opentox.org/dev) on the

documentation page under Components. This list will evolve into an inventory of OpenTox components and

will provide high level documentation and dependency tracking. To date this list includes the following

components which are documented in more detail on the website:

5.1.1 Prediction

Table 1 List of Current Prediction Components

Name Component Description

Fuzzy Means
Fuzzy-means is a fast, one-pass training method for Radial Basis Function (RBF)

neural networks and is based on the fuzzy partition of the input space.

Gaussian Processes for

Regression

GPR (Gaussian Processes for Regression) is a way of supervised learning. A Gaussian

process is a generalization of the Gaussian probability distribution.

iSar Perl implementation of a lazy SAR algorithm

J48
Implementation of Quinlan’s C4.5 algorithm for generating a pruned or unpruned

C4.5 decision tree.

kNN k-nearest neighbor algorithm (kNN), an instance-based, or lazy, learning method.

lazar
lazar command line program

C++ implementation of various lazar algorithms

lazar web interface Web interface for lazar

M5P Reconstruction of Quinlan’s M5 algorithm for inducing trees of regression models.

MaxTox

Comparing the query molecule to each cluster (EP based) and finding an MCS score

with respect to molecules

of each cluster. Using MCS score(s) in a Machine Learning algorithm, to generate

predictive models.

Multiple Linear

Regression

Simple and popular statistical technique, using several independent variables to

predict the outcome of a dependent variable.

MakeSCR – Self-

consistent Regression
Delphi implementation of a self-consistent regression (SCR) algorithm.

Partial-least Squares

Regression

Partial-least squares regression (PLS) simultaneously projects the x and y variables

onto the same subspace in such a way that there is a good relationship between the

predictor and response data. It can thus handle correlated variables, which are noisy

and possibly incomplete.

Rumble

RUMBLE (RUle and Margin Based LEarner) is a statistically motivated rule learning

system based on the Margin Minus Variance (MMV) approach. It is set up very

flexibly as it can make use of different plug-ins (e.g. FTM plugin, PROLOG plugin,

Meta plugin) for different kinds of rules.

SMIREP/SMIPPER

SMIREP/SMIPPER is based on combining feature generation and rule learning into

one integrated package. The underlying learning algorithm is similar to that of the

IREP rule learner employing a reduced error pruning approach.

http://opentox.org/dev

Deliverable Report

 10

Support Vector Machines
Support vector machines (SVM) are a set of supervised learning methods used for

classification and regression.

Toxmatch
Provides means to compare a chemical or set of chemicals to a toxicity dataset

through the use of similarity indices.

Toxtree

Toxtree is a full-featured and flexible user-friendly open source application, which

is able to estimate toxic hazard by applying a decision tree approach. Currently it

includes five plugins.

5.1.2 Descriptor Calculation

Table 2: List of Current Descriptor Calculation Components

Name Component Description

AMBIT

 a relational database database schema, allowing the storage and querying

of all relevant structure and property information, including data for toxicity

endpoints from various sources and formats. Can handle very large number

of structures efficiently.

 functional modules allowing a variety of evaluations, flexible structure,

similarity and other information retrieval. Used in both standalone and web

(servlets/taglibs based) applications.

Chemistry Development

Kit

The Chemistry Development Kit (CDK) is a Java library for structural chemo- and

bioinformatics. A number of descriptor implementations are available.

FreeTreeMiner

The FreeTreeMiner (FTM) software computes all subtrees (substructures) occurring

at a given minimum frequency in a set of molecules. The subtrees are built via a

depth first search (DFS). Additionally to the minimum frequency support, a

maximum frequency constraint can be set.

LibFminer

LibFMiner implements a method for efficiently mining relevant tree-shaped

molecular fragments, each representing a geometrical class, with minimum

frequency and statistical constraints.

Toxtree
Toxtree is a full-featured and flexible user-friendly open source application, which

is able to estimate toxic hazard by applying a decision tree approach.

gSpan’
C implementation of a graph mining algorithm

- feature generation: Mining for frequent subgraphs or subpaths/subtrees

JOELib2

Platform independent Java package consisting of an algorithm library designed for

prototyping, data mining and graph mining of chemical compounds. JOELib2 is the

successor of the OELib library from OpenEye

lazar

lazar command line program

C++ implementation of various lazar algorithms

 feature generation (paths)

 nearest neighbor and kernel classification and regression

 local models

Deliverable Report

 11

 activity-specific similarities

MakeMNA

MakeMNA is a software product for generating MNA descriptors.

These descriptors are based on the molecular structure representation, which

includes the hydrogens according to the valences and partial charges of other atoms

and does not specify the types of bonds.

MakeQNA
Quantitative Neighbourhoods of Atoms (QNA) descriptors are based on quantities of

ionization potential (IP) and electron affinity (EA) of each atom of the molecule.

MaxTox

Comparing the query molecule to each cluster (EP based) and finding an MCS score

with respect to molecules of each cluster. Using MCS score(s) in a Machine Learning

algorithm, to generate predictive models.

MOPAC

MOPAC (Molecular Orbital PACkage) supports the methods: MNDO, AM1, and PM3,

as well as Sparkle/AM1 for the lanthanides. All published NDDO parameter sets are

supported.

OpenBabel OpenBabel is an open source computational chemistry package written in C++.

ToxTree
Toxtree is a fully-featured and flexible user-friendly open source application, which

is able to estimate toxic hazard by applying a decision tree approach.

MakeSCR Delphi implementation of a self-consistent regression (SCR) algorithm.

5.1.3 Feature Selection

Table 3: List of Current Feature Selection Components

Name Component Description

CFS

CFS is a correlation-based filter method, giving high scores to subsets that include

features that are highly correlated to the class attribute, but have a low correlation

to each other.

Chi Square

Feature Selection via the chi square (X2) test is a commonly used method. The X2

method evaluates features individually by measuring their chi-squared statistic with

respect to the classes.

Fast Correlation-Based

Filter
Two-stage algorithm: 1) relevance analysis, 2) redundancy analysis

Information Gain

Attribute Evaluation

Information Gain Attribute Evaluation evaluates the worth of an attribute by

measuring the information gain with respect to the class.

Principle Component

Analysis

Transforms the data to a new coordinate system such that the greatest variance by

any projection of the data comes to lie on the first coordinate, the second greatest

variance on the second coordinate and so forth. The coordinates are here called

principal components.

Wrapper Feature Set

Evaluation

Wrapper methods evaluate subsets by running the classifier on the training data,

using only the attributes of the subset.

5.1.4 Data Access

Table 4: List of Current Data Access Components

Deliverable Report

 12

Name Component Description

AMBIT

relational database schema, allowing user to store and query all relevant structure

and property information, including data for toxicity endpoints from various sources

and formats. Can handle very large number of structures efficiently.

DSSTox data for lazar
Git repositories for versioned DSSTox sdf files, conversion scripts to generate lazar

input files, validation results

Sens-it-iv internal

database
Internal database for the Sens-it-iv http://www.sens-it-iv.eu FP6 project

Toxmatch

Provides means to compare a chemical or set of chemicals to a toxicity dataset

through the use of similarity indices.

Intended use is one to many or many to many quantitative read-across.

To help in the systematic formation of groups and read-across.

http://www.sens-it-iv.eu/

Deliverable Report

 13

5.1.5 Report Generation

Table 5: List of Current Report Generation Components

Name Component Description

AMBIT

 Recording of user actions

 Improved data entrance and visualization

 Reporting compatible with IUCLID 5

Lazar web interface Report Generation

CDK Structure Visualizer Web service for structure visualization and highlighting of substructures.

5.1.6 Validation

Table 6: List of Current Validation Components

Name Component Description

lazar

leave-one-out validation

Input: chemical structures and activities

Output: actual vs. predicted values, validation statistics

5.1.7 Integration

Table 7: List of Current Integration Components

Name Component Description

OpenTox plugin
Ruby on Rails plugin with interfaces to R, OpenBabel, CDK and basic functionality to

create predictive toxicology applications.

lazar plugin

Ruby on Rails plugin with interfaces for the lazar command line program

 Web based GUI

 rake tasks for administration and validation

Lazar web interface Web interface for lazar

Deliverable Report

 14

5.2 Architecture

Extensive discussions about the architecture of the OpenTox framework were carried out on the

OpenTox forums. The consensus outcome agreement was that OpenTox will be a platform-independent

collection of components that interact via well defined interfaces. The preferred form of communication

between components will be through web services. An initial description of the framework, that contains

also a list of minimum requirements for OpenTox components, has been posted in the developers’ area

(http://opentox.org/dev).

OpenTox is a framework for the integration of algorithms for predicting chemical toxicity. OpenTox will

provide:

 components for specialized tasks (e.g. database lookups, descriptor calculation, classification,

regression, report generation) that communicate through well defined language independent

interfaces

 example applications that demonstrate the capabilities of OpenTox components for special use

cases

The framework supports building multiple applications, as well as providing components for third party

applications.

The framework guarantees the portability of components by enforcing language-independent interfaces.

Implementation of an integration component in a specific language/platform automatically ports the

entire OpenTox framework to that language/platform.

Components are presently classified under the following categories:

 Prediction

 Descriptor calculation

 Feature Selection

 Data access

 Validation

 Report generation

 Integration

5.2.1 System overview

The OpenTox framework is composed of

 Components. Every component encapsulates a set of functionalities and exposes them via

well defined language-independent interfaces (protocols)

 Data

 Repository

An application implements a set of use cases, with the appropriate user interfaces.

The interactions between components are determined by their intended use and can differ

across different use cases. Use cases represent user stories, or typical uses of the system by

various types of users. Each use case consists of a series of steps, applying component

functionality on input data.

http://opentox.org/dev
http://opentox.org/dev

Deliverable Report

 15

The interaction between components is implemented as a component. The interaction

component offers the following functionalities:

 loads the series of steps, corresponding to the specific use case (from a configuration

file on a file system or on a network)

 takes care of loading necessary components

 executes the steps

The framework supports building multiple applications, as well as using the components in

third party applications.

The framework guarantees portability of components by enforcing a language-independent

architecture of the integration component and externalizing user scenarios in standard

configuration files (e.g. xml or txt). The implementation of the integration component in a

specific language/platform automatically ports the entire OpenTox framework to that

language/platform. It would be desirable to prove the portability of the platform by producing

implementations in at least two different languages. We should also aim at providing detailed

framework specifications and guidelines, enabling other parties to port and tailor the

framework to their specific environment and thus further enrich OpenTox's ecosystem.

5.2.2 Main description

This section provides an overview of the OpenTox framework, listing the elements that constitute the

framework and relationships between them.

Table 8 lists OpenTox components, where the column “Component” is the generic component,

exposing defined set of functionalities, while the second column lists the specific implementations of

the component, available in the framework.

Table 8. OpenTox components

Component Instances

(Q)SAR algorithm

 (Q)SAR algorithm 1

 (Q)SAR algorithm 2

 …

(Q)SAR model validation

 Validation algorithm 1

 Validation algorithm 2

 …

(Q)SAR descriptor calculations

 Descriptor 1

 Descriptor 2

 …

(Q)SAR feature selection

Deliverable Report

 16

 Selector 1

 Selector 2

 …

Data access module

 Data access 1 (e.g. file)

 Data access 2 (e.g. database)

 Data access 3 (e.g. PubChem)

 …

Report generation

 Report generation format 1

 Report generation format 2

 …

Error handling and reporting

Ontology/Dictionaries

 Endpoints

 Descriptors?

 Species?

 Units?

 …?

Table 9 lists the functionalities, exposed by each OpenTox component, where the column “Component” is the

name of the generic component, and the second column lists the specific operations, offered by the

component.

Table 9. Functionalities (operations), supported by each component

Component Operations

(Q)SAR algorithms

 Build

 Predict

 …

(Q)SAR model validation

 Validate

 Get statistics

 …

Deliverable Report

 17

(Q)SAR descriptor calculations

 Set parameters

 Calculate

 …

(Q)SAR feature selection

 Set parameters

 Select

Data access module

 Set query

 Retrieve data

 …

Report generation

 Select report type

 Generate report

 …

Error handling and reporting

 Get error message (user friendly/detailed)

Ontology/Dictionaries

 Endpoints – get fields, defined for an endpoint

 Descriptors – get implementations of (e.g.

LogP) descriptor

 Species - Latin name, common name

 Units – units conversion

 …?

Deliverable Report

 18

Table 10 defines the steps, which constitute a Use Case. Each step (column 2) is an operation, exposed by a

component (column 3).

Table 10: Use cases

Use case Steps (operations) Component

Use case 1 (very simple example)

 1. Retrieve data Data access

 2. Calculate descriptors (Q)SAR Descriptor

calculations

 3. Build QSAR model (Q)SAR Algorithms

 4. Validate the model (Q)SAR model validation

 5. Generate report Report generation

 …

Use case 2

 Step1

 Step 2

 …

Table 11 describes the applications and specific use cases that they solve.

Table 11: Applications and Use Cases Implemented

Application Use cases implemented

Application 1

 Use case 1

 Use case 2

 …

Application 2

 Use case 3

 Use case 4

 …

Deliverable Report

 19

5.2.3 User Interface

We have asked the question of shall we use a common user interface for each operation?

Advantages:

The above structure results in a layered view (system portability). Higher levels would be

allowed to use only functionalities, which are provided by adjacent lower levels. This would

help to ensure an implementation-independent protocol stack.

Layer Level

Application High

Use case

Component

Component operation Low

Table 12 defines which component is allowed to use functionality by other components.

Table 12. Relationships between components

Using components: The component X … … is allowed to use any functionality in

component Y

(Q)SAR algorithms (Q)SAR descriptor calculation

(Q)SAR model validation (Q)SAR algorithms

(Q)SAR descriptor calculation none

Data access Ontology/Dictionaries

Report generation none

Ontology/Dictionaries None

…. …

5.2.3.1 Data flow view

A data flow view defines how data is processed through the set of operations. It can be

specific for each use case and will be defined once detailed use cases are prepared.

Deliverable Report

 20

5.3 Element Catalog

5.3.1 Elements and their properties

 (Q)SAR algorithms. The QSAR algorithms module includes implementation of the relevant algorithms,

selected for the OpenTox framework, and provides a unified view of a (Q)SAR algorithm to other

modules. The unified view serves as an information hiding and allows algorithms to be easily

added/replaced.

Operations – build model, predict chemical compound, get statistics, etc.

Input/Output to be defined

(Q)SAR model validation. The (Q)SAR model validation module includes implementation of the validation

elements, selected for the OpenTox framework, and provides a unified view of a validation procedure to

other modules. The unified view serves as an information hiding and allows validation algorithms to be

easily added/replaced.

Operations – to be defined (e.g. a model as an input, validation statistics as an output)

Input/Output to be defined

Data access module. The data access module hides specifics of data formats and underlying storage

mechanisms.

Operations: Retrieve (named) dataset, given some query options. There could be mandatory and optional

operations.

Examples:

- Retrieve DSSTOX carcinogenicity dataset version XXX.

- Retrieve all available data for compound with CAS# = YYY-YY-YY

- Retrieve aromatic amines with all data available for endpoint ZZZ.

Input = query, dataset name

Output = set of compounds and related data

(to be refined)

Ontology/dictionary. This module provides a controlled vocabulary necessary for the unified view on the

data access and is used by the data access module.

Report generation. This module implements various reporting formats of interest to the end user.

Externalizing report generation in a separate module facilitates meeting requirements of different use

cases and supporting new types of reports.

 Operations: Generate report of type XX, given dataset Y.

 (to be refined)

Use cases. A use case is an ordered set of operations from different modules. Use cases are defined by

user requirements.

Deliverable Report

 21

In addition, if there are elements or relations relevant to the view that were omitted from the primary

presentation, the catalog is where those are introduced and explained.

5.3.2 Element interfaces

An interface is a boundary across which two independent entities meet and interact or communicate

with each other. Documenting an interface consists of naming and identifying it and documenting its

syntactic and semantic information. The first two parts constitute an interface's "signature." When an

interface's resources are invokable by programs, the signature names the programs and defines their

parameters. Parameters are defined by their order, data type, and (sometimes) whether or not their

value is changed by the program. A signature is the information that you would find about the

program, for instance, in an element's C or C++ header file or in a Java interface.

An interface is documented with an interface specification, which is a statement of element properties

the architect chooses to make known. The architect should expose only what is needed to interact with

the interface.

A Template for Documenting OpenTox Interfaces

5.3.3 Interface identity

When an element has multiple interfaces, identify the individual interfaces to distinguish them. This

usually means naming them. You may also need to provide a version number.

5.3.3.1 Resources provided

The heart of an interface document is the resources that the element provides.

Syntax, semantics (what happens when they are used), and any restrictions on usage are to be

included.

5.3.3.2 Resource syntax

Resource name, names and logical data types of arguments (if any), and so forth are described.

5.3.3.3 Resource semantics

This describes the result of invoking the resource. It might include:

 assignment of values to data that the actor invoking the resource can access. It might be as

simple as setting the value of a return argument or as far-reaching as updating a central

database.

 events that will be signalled or messages that will be sent as a result of using the resource.

 how other resources will behave in the future as the result of using this resource.

 humanly observable results (display)

5.3.3.4 Resource usage restrictions

Under what circumstances may this resource be used? (data initialization, number of actors interacting

with the resource, access rights, etc.)

Deliverable Report

 22

5.3.4 Data type definitions

Data type definitions will need to be defined

5.3.5 Exception definitions

Exceptions that can be raised by the resources on the interface will be described.

5.3.6 Variability provided by the interface

Does the interface allow the element to be configured in some way?

5.3.7 Quality attribute characteristics of the interface

Description of quality attribute characteristics (such as performance or reliability).

5.3.8 Element requirements

Specific, named resources provided by other elements.

5.3.9 Rationale and design issues

Motivation behind the design, constraints and compromises, what alternative designs were considered

and rejected (and why), and any insight about how to change the interface in the future.

5.3.10 Usage guide

Protocols used.

5.3.10.1 Element behaviour

Sequence of events; sequence diagram.

5.4 Context diagram

Shows how the system depicted relates to its environment.

Shows which component and connectors interact with external components and connectors, and via which

interfaces and protocols.

5.5 Variability guide

Lists decisions which are left unbound:

 the options, among which the choice is to be made (versions, parameterization of components)

 choice of protocols

 Ontology/Dictionaries content to be defined

 Component operations to be defined

Deliverable Report

 23

5.6 Architecture background

5.6.1 Design rationale

 Encapsulate functionality of components

 Facilitate addition / replacement of compatible components (e.g. QSAR Algorithm N can be easily

added to the pool of algorithms, since all Algorithms expose the same interface)

 More to be added

5.6.2 Analysis of results

Module decomposition serves as a basis to achieve the following quality goals:

Table 13: Quality goals from module decomposition

Goal Achieved by

Ease of change to: (Q)SAR algorithms, validation

procedures, data access, report generation

Information hiding

Understand anticipated changes

Evaluation procedure to take advantage of

experience of domain experts

Assign work teams so that their interactions were

minimized

Modules structured as a hierarchy; each work

team assigned to a second-level module and all

of its descendants

Deliverable Report

 24

Uses structure provides a basis to achieve the following quality goals:

Table 14: Quality goals from Uses Structure

Goal Achieved by

Incrementally build and test modules Create "is-allowed-to-use" structure for

programmers that limits module procedures each

can use

Design for platform change Modules communicate in language and platform

independent way

Produce usage guidance of manageable size Where appropriate, define uses to be a

relationship among modules

5.6.2.1 Assumptions

Documentation on assumptions will need to be developed.

5.7 Glossary of terms

Terms used in the views, with a brief description of each, will be provided.

5.8 Other information

Any additional information will be provided under this sub-section.

Deliverable Report

 25

6 Definition of APIs for the database, algorithm and validation interface

A set of minimum required functionalities for all OpenTox components of various categories (prediction,

descriptor calculation, data access, validation, report generation) has been determined and is listed on the

Documentation page in the developers’ area (http://opentox.org/dev). However, it is possible that there may

be additions to this list in future. Where individual use cases need further functionalities, these will be

addressed directly by the component developer.

Required functionality for all OpenTox components

Prediction

create model not applicable in all cases (e.g. expert systems), but required for validation

 Input training structures, training activities

 Output prediction model

predict

 Input chemical structure, prediction model

 Output prediction, confidence, [supporting information]

Descriptor calculation

calculate

 Input chemical structure, property

 Output descriptor[s]

Data access

create

 Input new data

update

 Input modified data

query

 Input chemical structure, endpoint

 Output experimental measurement[s]

delete

 Input ID

Validation

validate

 Input prediction_model, validation_method

 Output validation statistics, [supporting information]

Report generation

create report

 Input data, report type

 Output report

Draft class diagram proposals that define interfaces for OpenTox components were created and are presented

in the Figures below for Descriptor, Modelling, Similarity, Data Access, Feature Selection and Molecule

Representation Components.

http://opentox.org/dev

Deliverable Report

 26

Figure 1: Descriptor Calculation Component

Deliverable Report

 27

Figure 2: Modeling Component

Deliverable Report

 28

Figure 3: Similarity Component

Deliverable Report

 29

Figure 4: Data Access Component

Deliverable Report

 30

Figure 5: Feature Selection Component

Deliverable Report

 31

Figure 6: Molecule Representation

Deliverable Report

 32

Figure 7: OpenTox Components and InterActions

Deliverable Report

 33

Furthermore it was proposed to use a Representational State Transfer (REST) architecture for the

communication between components. Details of this are shown in Appendix B.

These propositions are currently the subject of further discussions and revisions. At the half year meeting in

February it was decided to stabilize the interface definitions first and subsequently to make decisions on the

web service architecture.

7 Conclusions

Initial requirements, standards and APIs for the OpenTox framework were defined and published in the

developer area of the OpenTox developer website (http://www.opentox.org/dev).

A clear common understanding and definition of the OpenTox Framework has been achieved and initial

components documented. Preliminary proposals on interfaces and web services - which are currently the

subject of further evaluation and testing - have been documented in detail.

At present there are no major problems within Work Package 1 that inhibit the progress of the project.

8 Appendix A: Use Cases Questionnaire with Summary of Responses

9 Appendix B: Representational State Transfer Architecture

http://www.opentox.org/dev

Appendix A

 2

OpenTox: Questions for Use Cases & Number of Responses

1a. What type of institution do you represent?

Industry 7

Government 0

Academia 0

Name of Institution (optional)

1b. What is the institution’s main business?

Food industry 0

Pharma industry 2

Suppliers of industrial chemicals 1

Other… 4

 (type in the gray box)

2. For what purpose do you need to predict/estimate toxicity of chemicals?

(check all that apply)

early candidate screening 5

high throughput screening 1

regulatory submissions, 5

research (toxicological mechanisms...), 5

risk assessment, 3

prioritisation of biological tests 5

Other… 1

 (type in the gray box)

3. Who does the prediction measurement/estimation?

trained toxicologist 5

bioinformatician 0

lab technician 1

computational chemist/modeler 3

Other…

 (type in the gray box)

Appendix A

 3

4. How are toxicity data obtained currently?

experimental animal tests 5

QSAR 4

read across 4

Other 3

 (type in the gray box)

5. What methods does your institution use?

Experimental testing 5

TopKat 1

Derek 3

ADAPT 1

Codessa 0

Other… 4

 (type in the gray box)

6. What level of detail do you need for individual predictions?

just active/inactive predictions 3

detailed information how the prediction was obtained, 5

 please explain… 5

 (type in the gray box)

7. For which types of compounds would you use a program such as OpenTox?

pharmaceuticals 2

industrial chemicals 4

cosmetics 2

food additives 1

Other… 3

 (type in the gray box)

Appendix A

 4

8. What are the most important endpoints?

please describe the purpose e.g. a regulatory endpoint (please specify which one), human adverse effects

(which one, do you have human data, what would be suitable animal/in vitro models) for general risk

assessment, ecotoxicological effects

6 responses received and are available for view within the partner area of the website.

9. Quantitative predictions?

Yes/No decisions are sufficient 3

Quantitative predictions are needed 6

Comments: 5

 (type in the gray box)

10. Types of end-points needed

Single endpoints 4

Activity profiles 4

Comments: 4

 (type in the gray box)

11. Do you need to be able to create your own prediction models

Yes 7 No 0

If yes, do you have a preference for certain methods or algorithms? 4

 (type in the gray box)

12. Maximum number of compounds processed per day/week/month

 per (type in the gray box)

 3 per month – 1 million per week

Typical number of compounds processed: per (type in the gray box)

13. Preferred computer platform(s) for (Q)SAR etc. (if applicable)

Linux 2

Windows desktop 5

Macintosh desktop 0

Windows laptop 3

Macintosh laptop 0

Other… 0 (type in the gray box)

Appendix A

 5

14. Any restrictions from corporate IT policies

No corporate IT restrictions 2

Must be via client-server on corporate intranet 4

Must be standalone and not send data over the internet 2

Other… 3

 (type in the gray box)

15. What level of in-house experience in the use and application of QSAR tools is available?

none 0

limited 0

moderate 5

expert 4

Please explain with examples... 4

 (type in the gray box)

16. What level of in-house experience in the development of QSAR models is available?

none 0

limited 2

moderate 1

expert 3

Please explain with examples... 3

 (type in the gray box)

17. What do see as the benefits and disadvantages of QSAR methods for toxicity assessment (please list)

Benefits/advantages.... 5

 (type in the gray box)

Disadvantages.... 5

 (type in the gray box)

18. What you see as the benefits and disadvantages of other non-testing methods for toxicity assessment

(please list)

Benefits/advantages.... 2

 (type in the gray box)

Disadvantages.... 1

 (type in the gray box)

Appendix A

 6

19. What you see as the benefits and disadvantages of experimental testing methods for toxicity assessment

(please list)

Benefits/advantages.... 4

 (type in the gray box)

Disadvantages.... 4

 (type in the gray box)

20. What features/functionality/culture would be necessary to encourage wider use of QSAR for
toxicity assessment

please list and explain... 5

 (type in the gray box)

21. Which workflow systems do you currently use (if any)?

None 0

Pipeline Pilot 1

Other 2 (type in the gray box)

2. Which workflow systems would you wish to use with OpenTox?

None

Pipeline Pilot 2

Other… 1 (type in the gray box)

23. Which QSAR models and formats would you want to import into OpenTox?

Models: (type in the gray box) Formats: 1

24. What features and capabilities in OpenTox (assuming you could specify them) would make you want to use

OpenTox over your existing methods, or in conjunction with them?

Please specify: 1 (type in the gray box)

Appendix B

 1

Representational State Transfer Architecture

Appendix B

 2

Appendix B

 3

Appendix B

 4

Appendix B

 5

Appendix B

 6

Appendix B

 7

Appendix B

 8

Appendix B

 9

Appendix B

 10

Appendix B

 11

Appendix B

 12

Appendix B

 13

Appendix B

 14

Appendix B

 15

