—
-._-_‘-II-
—

OpenTox

=

Deliverable D1.1

Initial requirements,
standards and APIs

Grant Agreement Health-F5-2008-200787

Acronym OpenTox

Name An Open Source Predictive Toxicology Framework
Coordinator Douglas Connect

4

SEVENTH FRAMEWORK
PROGRAMME

==

=
—
— .

OPenTox = Deliverable Report

Contract No. Health-F5-2008-200787

Document Type: Deliverable Report

WP/ Task: WP1 / D1.1

Name Initial requirements, standards and APIs

Document ID: OpenTox Deliverable Report WP1-D1.1

Date: Feb 28, 2009

Status: Final Version

Organisation: IST

Contributors Christoph Helma IST
Nicki Douglas DC
Barry Hardy DC
David Gallagher DG
Nina Jeliazkova IDEA
Stefan Kramer TUM

Distribution: Public

Purpose of Document: To document results for this deliverable

Document History: 1 - First draft sent to all partners on 13 Feb 2009

2 - Revised version 25 Feb 2009
3 - Final version submitted 28 Feb 2009
4 - Updated version with updated links 24 Feb 2010

——

= —
OPenTox = Deliverable Report
Table of Contents
= 1 5 L= e T = 4
1] T 0 1= T e 5
2 13 1 g T T ot T o e 6
3 Evaluation of common use-cases for toxicological end users, data providers,
(Q)SAR model developers and algorithm developers.....ccccivirrimrinsranssanssansssnssannss 6
4 Evaluation of current standards that are relevant for the OpenTox framework6
4.1 Standards that are relevant for OPENTOX cuuu.iiiiiruiiiieiiiieeeeeeee e et e e e e e e e e et e e e e enaeeeeeanneeeeesnnnnns 6
4.2 Minimum Information Standards for Biological EXperimentsoooooiiiiiiiiiiiiinieeeee e 7
L T o) q T} § Y DT L - NPT PSPPI 7
Y - Y T =1 o o PP 7
2 B AN [e To Y g 1 T Y7 U e =1 Lo o F PP 7
4.4.2 (Q)SAR Validation (Model Validation)ccuieuiieniieiii it e et e e e e e ra e e a s ea s eaesnasanes 7
S (T o o] o PR 7
5 Initial specification of requirements and standards for the OpenTox framework .9

SEVENTH FRAMEWORK * 5k
PROGRAMME

5.1.1 [¢ =To [Tl oY o T PP 9
Y I B 1Yol o o] @1 el | = ' RSP 10
T O T I 1=\ - UL o o 1 PP 11
T I =Y oY] €T s 1Y =1 of Lo Y PR 13
ST T V- VT - o [0 o PO 13
R I T 1 | =T =1 of o] o TR 13
I N {of oY1 (Yot (| TP PTRRPPPPRINt 14
5.2.1 SYSTRIM OVEIVIEW ..eeieeeeeeee et e e e e e e e e e e e e e e e e e e e s e eea e e e e e e e e enan s e eansen s e e enneeenneerenennnns 14
T \V - U o 1Y o g o1 f o S 15
SV B VT gl [(=T o - Ul PP TP TPPRPRPPPINt 19
IS T =1 1= 5 =T oY = 7 o Yo [20
5.3.1 Elements and their PropPerties . .o e e e s e e e e s s e e e aaa e s e e easaneeeenen 20
5.3.2 ElemMent INTOI ACES coeieetieeiiee et e ettt e et et e e e e e e e e e et e e e e n e e e e e e e e e eererennn e e e aaaaaaeaes 21
SIS TS T 1) =T o - Ul T =Y o 41 TR 21
Y TR S B T 7 U Y7 oI [=] 10 T34 o L3 22
5.3.5 EXCEPLioN definitioNs . iiiiiieiiiiiiiiiie e 22
5.3.6 Variability provided by the iNterfacecccueoi i e e e e 22
5.3.7 Quality attribute characteristics of the iNterfacecooeeuuieiiiiiiii e 22

S S
OPenTOX = Deliverable Report

TS T TR 1Yo o 1= ol =T [0 T =T =T oSS 22
5.3.9 Rationale and deSigN ISSUESceuuuieiieiiiiieieeiiiiee e e et e e e e e et e e e e eaaaa e e eeeana s eerana e eeeannaeeerannnserennanns 22
5.3.10 L83 Vo TN 1 o =S 22
S oY} (D q e [T Vo Vo PP TP TTPPRRPPPPINt 22
5.5 Variability QUILE ...eeeeeeieeeieiieeee et e e e e e e e e e et e e et e e e e e e e e e e neeena e e aaaaeeaee 22
5.6 Architecture backgroUNnd ... e et e e enaa s 23
5.6.1 (D] [T I = (o] g - LT PP PSP 23
I ST N o T 1Y £ T 0 T R 23
A O Uo 13- 1 o VAo) 8 =Y o 1 -3 24
5.8 Other iNfOrMatioN......ciiiiiiiiee et e e e e e e e e e et e e e e a e e e e e e e eeeeeeeeennnn e aaeaeaaaaeees 24
6 Definition of APIs for the database, algorithm and validation interface.............. 25
7 CONCIUSIONS .uiuiiumiumrerimsiassesiassassassessessassassassassassansanssnssnssnsssnsnnsansansansansansansansansans 33
8 Appendix A: Use Cases Questionnaire with Summary of Responsesc.c.uauases 33
9 Appendix B: Representational State Transfer Architecture.........ccvccivirvcrvcnvansns 33
Table of Figures
Figure 1: Descriptor CalCUlation COMPONENL............ ettt e et e e e e et et e eetsssaaaaaaseaaaaneenansnns 26
V1o [V g2 e e =) g e M @Y ar o Yo L L=T L RS 27
Figure 3. SitMUAITEY COMUDONENE c.....ce..eeeeeeeeeeeeeeee et ettt et ete e et te e e eta e e taa e ata e et ts e e ataasstaassstaassaassnsaansaannnnssnsnnnsnan 28
Figure 4. DAta ACCESS COMUPDONMEIIE . c.....eeeeeeeeeeeeeeeeeseeeette et tee ettt e e tes et tsaa e taaentasseasassssssantsasansssnsnsssnsssnnnsasannsnsnesas 29
Figure 5. FEAtUIE S€IECLION COMUDONEIILeeeeeeeeeeeeeeeeee ettt e e eee et ta e et e e ettt e e aaaassaaaaasaaansaansnsannsnsnnnssnannsannnnas 30
Figure 6.: MOIECUIE REPIESEIIATIONc.ccoeeeeeeeeeeeeee ettt et e e e e e e e e e et e tasssaaaanaeeeaeennensnnnns 317
Figure 7: OpenTox COMPONENLS ANA INEEIACLIONSueeeeeeerseeseeeeeeeetttee e attttteeatttttasseatassssaetasssssnssssssssnnnsnns 32

SEVENTH FRAMEWORK * 5k
PROGRAMME

-
———_)
E—0

\-‘_-_?
OPenTOX = Deliverable Report

Summary

A use-case questionnaire was created and sent to potential users of the OpenTox framework. Responses were
collected and summarized.

Current standards that are relevant for OpenTox were collected in the developers’ area of the OpenTox website
(www.opentox.org/dev). This list will serve as a reference for OpenTox developers and will be continuously
updated.

To gain a general overview, a list of existing software from OpenTox partners was collected in the developers’
area. This list will evolve into an inventory of OpenTox components and will provide high level documentation
and dependency tracking.

Extensive discussions about the architecture of the OpenTox framework were carried out on the OpenTox
forums and the general agreement was that OpenTox will be a platform-independent collection of components
that interact via well defined interfaces. The preferred form of communication between components will be
through web services.

A set of minimum required functionalities for OpenTox components of various categories (prediction,
descriptor calculation, data access, validation, report generation) was published on the developer web pages.
These propositions are the subject of further discussions and revisions to create stable application
programming interface definitions.

http://www.opentox.org/dev

2

-
%h
e

\-‘_-_?
OPenTOX = Deliverable Report

Introduction

OpenTox is an open source project and we are trying to follow the best practices of open source project
management. This means that source code, technical discussions and documents are open to the general
public and interested parties can participate in development if they have registered
(http://opentox.org/join_form) for access to the OpenTox developers’ area (http://opentox.org/dev)

Confidential information (e.g. non-anonymized responses to questionnaires, administrative documents) is
available in the OpenTox partner area.

Evaluation of common use-cases for toxicological end users, data providers,
(Q)SAR model developers and algorithm developers

A use-case questionnaire was created and sent to 20 potential users of the OpenTox framework. The list of the
questions included as well as results received so far are summarized in Appendix A. Up to now there has been
no general converging trend toward a specific type of use case among potential OpenTox users. This may be
due to the relatively low number of responses received so far, but it may also indicate that we will need to
provide a great flexibility with the OpenTox framework to meet individual requirements. To obtain a larger
number of responses we are planning to extend the number of participants and to use web-based
questionnaire forms for easier data entry and evaluation (http://www.opentox.org/toxicity-
prediction/userinput).

Evaluation of current standards that are relevant for the OpenTox framework

Current standards that are relevant for OpenTox have been gathered and uploaded to the Framework
Description page in the developers’ area for ongoing reference. This list will serve as a reference for OpenTox
developers and will be continuously updated.

The most important standards for OpenTox at the current state are ontology-related. The suitability of ToxML
and IUCLIDS templates is currently being evaluated by the database Work Package (WP3); see the detailed
discussion in the deliverable 3.1 report).

4.1 Standards that are relevant for OpenTox

e Minimum Information Standards for Biological Experiments
(http://en.wikipedia.org/wiki/Minimum_Information_Standards)

e Toxicity Data

e Validation

e Algorithm Validation

e (Q)SAR Validation (Model Validation)

e Reports

http://opentox.org/join_form
http://opentox.org/dev
http://www.opentox.org/toxicity-prediction/userinput
http://www.opentox.org/toxicity-prediction/userinput
http://en.wikipedia.org/wiki/Minimum_Information_Standards
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#Toxicity-Data
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#Validation
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#Algorithm-Validation
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#QSAR-Validation-Model-Validation
http://opentox.org/wiki/opentox/Standards_that_are_relevant_for_OpenTox#Reports

.
o —
e

OpenTox

—
—

Deliverable Report

4.2 Minimum Information Standards for Biological Experiments
(http://en.wikipedia.org/wiki/Minimum_Information_Standards)
Example standards and formats:

e Minimum Information for Biological and Biomedical Investigations (MIBBI)
http://mibbi.org/index.php/Main_Page

e Functional Genomics Experiment (FUGE) http://fuge.sourceforge.net/
e MAGE http://www.mged.org/index.html, MIAPE http://www.psidev.info/index.php?q=node/91, ...
e Predictive Model Markup Language (PMML) http://www.dmg.org/pmml-v3-0.html

4.3 Toxicity Data
e DSSTox http://www.epa.gov/ncct/dsstox/
e ToxML http://www.leadscope.com/toxml.php
e PubChem http://pubchem.ncbi.nlm.nih.gov/

e OECD Harmonised Templates
http://www.oecd.org/document/13/0,3343,en_2649_34365_36206733_1_1_1_1,00.html

e |UCLIDS templates http://iuclid.echa.europa.eu/index.php?fuseaction=home.format

e Standard for Exchange of Non-clinical Data (SEND) e.g., see
http://www.cdisc.org/models/send/v2.3/index.html and
http:/ /www.pointcross.com/pharma/sendit.htm

4.4 Validation

4.4.1 Algorithm Validation

e common best practices such as k-fold cross validation, leave-one-out, scrambling

4.4.2 (Q)SAR Validation (Model Validation)
e OECD Principles http://www.oecd.org/dataoecd/33/37/37849783.pdf
e QSAR Model Reporting Format (QMRF) http://qgsardb.jrc.it/gmrf/help.html

e QSAR Prediction Reporting Format (QPRF) http://ecb.jrc.it/gsar/qsar-
tools/qrf/QPRF_version_1.1.pdf

4.5 Reports
e REACH Guidance on Information Requirements and Chemical Safety Assessment

http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm

SEVENTH FRAMEWORK * 5k
PROGRAMME

http://en.wikipedia.org/wiki/Minimum_Information_Standards
http://mibbi.org/index.php/Main_Page
http://fuge.sourceforge.net/
http://www.mged.org/index.html
http://www.psidev.info/index.php?q=node/91
http://www.dmg.org/pmml-v3-0.html
http://www.epa.gov/ncct/dsstox/
http://www.leadscope.com/toxml.php
http://pubchem.ncbi.nlm.nih.gov/
http://www.oecd.org/document/13/0,3343,en_2649_34365_36206733_1_1_1_1,00.html
http://iuclid.echa.europa.eu/index.php?fuseaction=home.format
http://www.cdisc.org/models/send/v2.3/index.html
http://www.pointcross.com/pharma/sendit.htm
http://www.oecd.org/dataoecd/33/37/37849783.pdf
http://qsardb.jrc.it/qmrf/help.html
http://ecb.jrc.it/qsar/qsar-tools/qrf/QPRF_version_1.1.pdf
http://ecb.jrc.it/qsar/qsar-tools/qrf/QPRF_version_1.1.pdf
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm

S S
OPenTOX = Deliverable Report

o Part F - Chemicals Safety Report
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_part_f
_en.pdf?vers=30_07_08

o Appendix Part F
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_appe
ndix_part_f_en.pdf?vers=30_07_08

http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_part_f_en.pdf?vers=30_07_08
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_part_f_en.pdf?vers=30_07_08
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_appendix_part_f_en.pdf?vers=30_07_08
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_appendix_part_f_en.pdf?vers=30_07_08

S S
OpenTox =

Deliverable Report

Initial specification of requirements and standards for the OpenTox

framework

Existing software from OpenTox partners was collected in the developers’ area (http://opentox.org/dev) on the
documentation page under Components. This list will evolve into an inventory of OpenTox components and
will provide high level documentation and dependency tracking. To date this list includes the following
components which are documented in more detail on the website:

5.1.1 Prediction

Table 1 List of Current Prediction Components

Name

Fuzzy Means

Gaussian Processes for

Regression

iSar

J48

kNN

lazar

lazar web interface

M5P

MaxTox

Multiple Linear
Regression

MakeSCR - Self-

consistent Regression

Partial-least Squares
Regression

Rumble

SMIREP/SMIPPER

4

Component Description

Fuzzy-means is a fast, one-pass training method for Radial Basis Function (RBF)
neural networks and is based on the fuzzy partition of the input space.

GPR (Gaussian Processes for Regression) is a way of supervised learning. A Gaussian
process is a generalization of the Gaussian probability distribution.

Perl implementation of a lazy SAR algorithm

Implementation of Quinlan’s C4.5 algorithm for generating a pruned or unpruned
C4.5 decision tree.

k-nearest neighbor algorithm (kNN), an instance-based, or lazy, learning method.
lazar command line program

C++ implementation of various lazar algorithms

Web interface for lazar

Reconstruction of Quinlan’s M5 algorithm for inducing trees of regression models.

Comparing the query molecule to each cluster (EP based) and finding an MCS score
with respect to molecules

of each cluster. Using MCS score(s) in a Machine Learning algorithm, to generate
predictive models.

Simple and popular statistical technique, using several independent variables to
predict the outcome of a dependent variable.

Delphi implementation of a self-consistent regression (SCR) algorithm.

Partial-least squares regression (PLS) simultaneously projects the x and y variables
onto the same subspace in such a way that there is a good relationship between the
predictor and response data. It can thus handle correlated variables, which are noisy
and possibly incomplete.

RUMBLE (RUle and Margin Based LEarner) is a statistically motivated rule learning
system based on the Margin Minus Variance (MMV) approach. It is set up very
flexibly as it can make use of different plug-ins (e.g. FTM plugin, PROLOG plugin,
Meta plugin) for different kinds of rules.

SMIREP/SMIPPER is based on combining feature generation and rule learning into
one integrated package. The underlying learning algorithm is similar to that of the
IREP rule learner employing a reduced error pruning approach.

http://opentox.org/dev

-
—

OpenTox

f'l

Support Vector Machines

Toxmatch

Toxtree

e

e —
E—

Deliverable Report

Support vector machines (SVM) are a set of supervised learning methods used for
classification and regression.

Provides means to compare a chemical or set of chemicals to a toxicity dataset
through the use of similarity indices.

Toxtree is a full-featured and flexible user-friendly open source application, which
is able to estimate toxic hazard by applying a decision tree approach. Currently it
includes five plugins.

5.1.2 Descriptor Calculation

Table 2: List of Current Descriptor Calculation Components

Name

AMBIT

Chemistry Development
Kit

FreeTreeMiner

LibFminer

Toxtree

gSpan’

JOELib2

lazar

Component Description

e arelational database database schema, allowing the storage and querying
of all relevant structure and property information, including data for toxicity
endpoints from various sources and formats. Can handle very large number
of structures efficiently.

e functional modules allowing a variety of evaluations, flexible structure,
similarity and other information retrieval. Used in both standalone and web
(servlets/taglibs based) applications.

The Chemistry Development Kit (CDK) is a Java library for structural chemo- and
bioinformatics. A number of descriptor implementations are available.

The FreeTreeMiner (FTM) software computes all subtrees (substructures) occurring
at a given minimum frequency in a set of molecules. The subtrees are built via a
depth first search (DFS). Additionally to the minimum frequency support, a
maximum frequency constraint can be set.

LibFMiner implements a method for efficiently mining relevant tree-shaped
molecular fragments, each representing a geometrical class, with minimum
frequency and statistical constraints.

Toxtree is a full-featured and flexible user-friendly open source application, which
is able to estimate toxic hazard by applying a decision tree approach.

C implementation of a graph mining algorithm
- feature generation: Mining for frequent subgraphs or subpaths/subtrees

Platform independent Java package consisting of an algorithm library designed for
prototyping, data mining and graph mining of chemical compounds. JOELib2 is the
successor of the OELib library from OpenEye

lazar command line program
C++ implementation of various lazar algorithms
o feature generation (paths)
e nearest neighbor and kernel classification and regression

e |ocal models

10 ol

f'l

MakeMNA

MakeQNA

MaxTox

MOPAC

OpenBabel

ToxTree

MakeSCR

-
—

OpenTox

e
——

Deliverable Report

e activity-specific similarities

MakeMNA is a software product for generating MNA descriptors.

These descriptors are based on the molecular structure representation, which
includes the hydrogens according to the valences and partial charges of other atoms
and does not specify the types of bonds.

Quantitative Neighbourhoods of Atoms (QNA) descriptors are based on quantities of
ionization potential (IP) and electron affinity (EA) of each atom of the molecule.

Comparing the query molecule to each cluster (EP based) and finding an MCS score
with respect to molecules of each cluster. Using MCS score(s) in a Machine Learning
algorithm, to generate predictive models.

MOPAC (Molecular Orbital PACkage) supports the methods: MNDO, AMT1, and PM3,
as well as Sparkle/AM1 for the lanthanides. All published NDDO parameter sets are
supported.

OpenBabel is an open source computational chemistry package written in C++.

Toxtree is a fully-featured and flexible user-friendly open source application, which
is able to estimate toxic hazard by applying a decision tree approach.

Delphi implementation of a self-consistent regression (SCR) algorithm.

5.1.3 Feature Selection

Table 3. List of Current Feature Selection Components

Name

CFS

Chi Square

Fast Correlation-Based
Filter

Information Gain
Attribute Evaluation

Principle Component
Analysis

Wrapper Feature Set
Evaluation

5.1.4 Data Access

Component Description

CFS is a correlation-based filter method, giving high scores to subsets that include
features that are highly correlated to the class attribute, but have a low correlation
to each other.

Feature Selection via the chi square (X2) test is a commonly used method. The X2
method evaluates features individually by measuring their chi-squared statistic with
respect to the classes.

Two-stage algorithm: 1) relevance analysis, 2) redundancy analysis

Information Gain Attribute Evaluation evaluates the worth of an attribute by
measuring the information gain with respect to the class.

Transforms the data to a new coordinate system such that the greatest variance by
any projection of the data comes to lie on the first coordinate, the second greatest
variance on the second coordinate and so forth. The coordinates are here called
principal components.

Wrapper methods evaluate subsets by running the classifier on the training data,
using only the attributes of the subset.

Table 4: List of Current Data Access Components

11 il

-
%h
e

\-‘_-_?
OPenTOX = Deliverable Report

Name Component Description

relational database schema, allowing user to store and query all relevant structure
AMBIT and property information, including data for toxicity endpoints from various sources
and formats. Can handle very large number of structures efficiently.
Git repositories for versioned DSSTox sdf files, conversion scripts to generate lazar

DSSTox data for lazar)) o
input files, validation results

Sens-it-iv internal

Internal database for the Sens-it-iv http://www.sens-it-iv.eu FP6 project
database

Provides means to compare a chemical or set of chemicals to a toxicity dataset

through the use of similarity indices.

Toxmatch . N
Intended use is one to many or many to many quantitative read-across.

To help in the systematic formation of groups and read-across.

12 il

http://www.sens-it-iv.eu/

-
%h
e

\-‘_-_?
OPenTOX = Deliverable Report

5.1.5 Report Generation

Table 5: List of Current Report Generation Components
Name Component Description
e Recording of user actions
AMBIT e Improved data entrance and visualization
e Reporting compatible with IUCLID 5
Lazar web interface Report Generation

CDK Structure Visualizer Web service for structure visualization and highlighting of substructures.

5.1.6 Validation

Table 6: List of Current Validation Components
Name Component Description
leave-one-out validation

lazar Input: chemical structures and activities

Output: actual vs. predicted values, validation statistics

5.1.7 Integration

Table 7: List of Current Integration Components
Name Component Description

. Ruby on Rails plugin with interfaces to R, OpenBabel, CDK and basic functionality to
OpenTox plugin . . N
create predictive toxicology applications.
Ruby on Rails plugin with interfaces for the lazar command line program
lazar plugin e Web based GUI
e rake tasks for administration and validation

Lazar web interface Web interface for lazar

13 ol

==

s<__
OPenTOX = Deliverable Report

5.2

Architecture

Extensive discussions about the architecture of the OpenTox framework were carried out on the
OpenTox forums. The consensus outcome agreement was that OpenTox will be a platform-independent
collection of components that interact via well defined interfaces. The preferred form of communication
between components will be through web services. An initial description of the framework, that contains
also a list of minimum requirements for OpenTox components, has been posted in the developers’ area
(http://opentox.org/dev).

OpenTox is a framework for the integration of algorithms for predicting chemical toxicity. OpenTox will
provide:

. components for specialized tasks (e.g. database lookups, descriptor calculation, classification,
regression, report generation) that communicate through well defined language independent
interfaces

. example applications that demonstrate the capabilities of OpenTox components for special use
cases

The framework supports building multiple applications, as well as providing components for third party
applications.

The framework guarantees the portability of components by enforcing language-independent interfaces.
Implementation of an integration component in a specific language/platform automatically ports the
entire OpenTox framework to that language/platform.

Components are presently classified under the following categories:
e Prediction

e Descriptor calculation

e Feature Selection

e Data access

e Validation

e Report generation

e Integration

5.2.1 System overview

The OpenTox framework is composed of

e Components. Every component encapsulates a set of functionalities and exposes them via
well defined language-independent interfaces (protocols)

e Data
e Repository
An application implements a set of use cases, with the appropriate user interfaces.

The interactions between components are determined by their intended use and can differ
across different use cases. Use cases represent user stories, or typical uses of the system by
various types of users. Each use case consists of a series of steps, applying component
functionality on input data.

14 il

http://opentox.org/dev
http://opentox.org/dev

—

N
OPenTOX = Deliverable Report

5.2.2

The interaction between components is implemented as a component. The interaction
component offers the following functionalities:

e loads the series of steps, corresponding to the specific use case (from a configuration
file on a file system or on a network)

e takes care of loading necessary components
e executes the steps

The framework supports building multiple applications, as well as using the components in
third party applications.

The framework guarantees portability of components by enforcing a language-independent
architecture of the integration component and externalizing user scenarios in standard
configuration files (e.g. xml or txt). The implementation of the integration component in a
specific language/platform automatically ports the entire OpenTox framework to that
language/platform. It would be desirable to prove the portability of the platform by producing
implementations in at least two different languages. We should also aim at providing detailed
framework specifications and guidelines, enabling other parties to port and tailor the
framework to their specific environment and thus further enrich OpenTox's ecosystem.

Main description

This section provides an overview of the OpenTox framework, listing the elements that constitute the
framework and relationships between them.

Table 8 lists OpenTox components, where the column “Component” is the generic component,
exposing defined set of functionalities, while the second column lists the specific implementations of
the component, available in the framework.

Table 8. OpenTox components

Component Instances

(Q)SAR algorithm

(Q)SAR algorithm 1

(Q)SAR algorithm 2

(Q)SAR model validation

Validation algorithm 1

Validation algorithm 2

(Q)SAR descriptor calculations

Descriptor 1

Descriptor 2

(Q)SAR feature selection

15 ol

==

--\

OpenTox =

Deliverable Report

Selector 1

Selector 2

Data access module

Data access 1 (e.qg. file)

Data access 2 (e.g. database)

Data access 3 (e.g. PubChem)

Report generation

Report generation format 1

Report generation format 2

Error handling and reporting

Ontology/Dictionaries

Endpoints

Descriptors?

Species?

Units?

2?7

Table 9 lists the functionalities, exposed by each OpenTox component, where the column “Component” is the
name of the generic component, and the second column lists the specific operations, offered by the
component.

Table 9. Functionalities (operations), supported by each component

Component Operations

(Q)SAR algorithms

Build

Predict

(Q)SAR model validation

Validate

Get statistics

16 ol

==

N
OPenTOX = Deliverable Report

(Q)SAR descriptor calculations

Set parameters

Calculate

(Q)SAR feature selection

Set parameters

Select

Data access module

Set query

Retrieve data

Report generation

Select report type

Generate report

Error handling and reporting

Get error message (user friendly/detailed)

Ontology/Dictionaries

Endpoints - get fields, defined for an endpoint

Descriptors - get implementations of (e.g.
LogP) descriptor

Species - Latin name, common name

Units - units conversion

.27

17 il

-
%h
e

=
OpenTox =

Table 10 defines the steps, which constitute a Use Case. Each step (column 2) is an operation, exposed by a

component (column 3).

Table 10: Use cases

Deliverable Report

Use case

Steps (operations)

Component

Use case 1 (very simple example)

1. Retrieve data

Data access

2. Calculate descriptors

(Q)SAR Descriptor
calculations

3. Build QSAR model

(Q)SAR Algorithms

4. Validate the model

(Q)SAR model validation

5. Generate report

Report generation

Use case 2

Step1

Step 2

Table 11 describes the applications and specific use cases that they solve.

Table 11: Applications and Use Cases Implemented

Application Use cases implemented
Application 1

Use case 1

Use case 2
Application 2

Use case 3

Use case 4

18 ol

-
%h
e

=
OpenTox =

5.2.3 User Interface

Deliverable Report

We have asked the question of shall we use a common user interface for each operation?

Advantages:

The above structure results in a layered view (system portability). Higher levels would be

allowed to use only functionalities, which are provided by adjacent lower levels. This would

help to ensure an implementation-independent protocol stack.

Layer Level
Application High
Use case

Component

Component operation Low

Table 12 defines which component is allowed to use functionality by other components.

Table 12. Relationships between components

Using components: The component X ...

... is allowed to use any functionality in
component Y

(Q)SAR algorithms

(Q)SAR descriptor calculation

(Q)SAR model validation

(Q)SAR algorithms

(Q)SAR descriptor calculation

none

Data access

Ontology/Dictionaries

Report generation

none

Ontology/Dictionaries

None

5.2.3.1 Data flow view

A data flow view defines how data is processed through the set of operations. It can be
specific for each use case and will be defined once detailed use cases are prepared.

19

OpenTox

5.3

=Y
e
e

f'l

Deliverable Report

Element Catalog

5.3.1 Elements and their properties

(Q)SAR algorithms. The QSAR algorithms module includes implementation of the relevant algorithms,
selected for the OpenTox framework, and provides a unified view of a (Q)SAR algorithm to other
modules. The unified view serves as an information hiding and allows algorithms to be easily
added/replaced.

Operations - build model, predict chemical compound, get statistics, etc.

Input/Output to be defined

(Q)SAR model validation. The (Q)SAR model validation module includes implementation of the validation
elements, selected for the OpenTox framework, and provides a unified view of a validation procedure to
other modules. The unified view serves as an information hiding and allows validation algorithms to be
easily added/replaced.

Operations - to be defined (e.g. a model as an input, validation statistics as an output)

Input/Output to be defined

Data access module. The data access module hides specifics of data formats and underlying storage
mechanisms.

Operations: Retrieve (named) dataset, given some query options. There could be mandatory and optional
operations.

Examples:

- Retrieve DSSTOX carcinogenicity dataset version XXX.

- Retrieve all available data for compound with CAS# = YYY-YY-YY
- Retrieve aromatic amines with all data available for endpoint ZZZ.
Input = query, dataset name

Output = set of compounds and related data

(to be refined)

Ontology/dictionary. This module provides a controlled vocabulary necessary for the unified view on the
data access and is used by the data access module.

Report generation. This module implements various reporting formats of interest to the end user.
Externalizing report generation in a separate module facilitates meeting requirements of different use
cases and supporting new types of reports.

Operations: Generate report of type XX, given dataset Y.
(to be refined)

Use cases. A use case is an ordered set of operations from different modules. Use cases are defined by
user requirements.

* X x
* *
* *
* *
DRK

20 * 5 *

-
—

e

f'l

OPenTOX = Deliverable Report

5.3.2

5.3.3

5.3.3.1

5.3.3.2

5.3.3.3

5.3.3.4

In addition, if there are elements or relations relevant to the view that were omitted from the primary
presentation, the catalog is where those are introduced and explained.

Element interfaces

An interface is a boundary across which two independent entities meet and interact or communicate
with each other. Documenting an interface consists of naming and identifying it and documenting its
syntactic and semantic information. The first two parts constitute an interface's "signature.”" When an
interface's resources are invokable by programs, the signature names the programs and defines their
parameters. Parameters are defined by their order, data type, and (sometimes) whether or not their
value is changed by the program. A signature is the information that you would find about the
program, for instance, in an element's C or C++ header file or in a Java interface.

An interface is documented with an interface specification, which is a statement of element properties
the architect chooses to make known. The architect should expose only what is needed to interact with
the interface.

A Template for Documenting OpenTox Interfaces

Interface identity

When an element has multiple interfaces, identify the individual interfaces to distinguish them. This
usually means naming them. You may also need to provide a version number.

Resources provided

The heart of an interface document is the resources that the element provides.
Syntax, semantics (what happens when they are used), and any restrictions on usage are to be
included.

Resource syntax

Resource name, names and logical data types of arguments (if any), and so forth are described.

Resource semantics

This describes the result of invoking the resource. It might include:

e assignment of values to data that the actor invoking the resource can access. It might be as
simple as setting the value of a return argument or as far-reaching as updating a central
database.

e events that will be signalled or messages that will be sent as a result of using the resource.
e how other resources will behave in the future as the result of using this resource.

¢ humanly observable results (display)

Resource usage restrictions

Under what circumstances may this resource be used? (data initialization, number of actors interacting
with the resource, access rights, etc.)

21 il

s<___
OPenTOX = Deliverable Report

5.3.4 Data type definitions

Data type definitions will need to be defined

5.3.5 Exception definitions

Exceptions that can be raised by the resources on the interface will be described.

5.3.6 Variability provided by the interface

Does the interface allow the element to be configured in some way?

5.3.7 Quality attribute characteristics of the interface

Description of quality attribute characteristics (such as performance or reliability).

5.3.8 Element requirements

Specific, named resources provided by other elements.

5.3.9 Rationale and design issues

Motivation behind the design, constraints and compromises, what alternative designs were considered
and rejected (and why), and any insight about how to change the interface in the future.

5.3.10 Usage guide

Protocols used.

5.3.10.1 Element behaviour

Sequence of events; sequence diagram.

5.4 Context diagram
Shows how the system depicted relates to its environment.

Shows which component and connectors interact with external components and connectors, and via which
interfaces and protocols.

5.5 Variability guide

Lists decisions which are left unbound:
e the options, among which the choice is to be made (versions, parameterization of components)
e choice of protocols
e Ontology/Dictionaries content to be defined

e Component operations to be defined

22 il

-
%h
e

=
OpenTox =

5.6 Architecture background

5.6.1 Design rationale

Deliverable Report

e Encapsulate functionality of components

e Facilitate addition / replacement of compatible components (e.g. QSAR Algorithm N can be easily

added to the pool of algorithms, since all Algorithms expose the same interface)

e More to be added

5.6.2 Analysis of results

Module decomposition serves as a basis to achieve the following quality goals:

Table 13: Quality goals from module decomposition

Goal

Achieved by

Ease of change to: (Q)SAR algorithms, validation
procedures, data access, report generation

Information hiding

Understand anticipated changes

Evaluation procedure to take advantage of
experience of domain experts

Assign work teams so that their interactions were
minimized

Modules structured as a hierarchy; each work
team assigned to a second-level module and all
of its descendants

23 * 5 *

==

N
OPenTOX = Deliverable Report

Uses structure provides a basis to achieve the following quality goals:

Table 14: Quality goals from Uses Structure

Goal Achieved by

Incrementally build and test modules Create "is-allowed-to-use" structure for
programmers that limits module procedures each
can use

Design for platform change Modules communicate in language and platform

independent way

Produce usage guidance of manageable size Where appropriate, define uses to be a
relationship among modules

5.6.2.1 Assumptions

Documentation on assumptions will need to be developed.

5.7 Glossary of terms

Terms used in the views, with a brief description of each, will be provided.

5.8 Other information

Any additional information will be provided under this sub-section.

24 il

==

N
OPenTOX = Deliverable Report

Definition of APIs for the database, algorithm and validation interface

A set of minimum required functionalities for all OpenTox components of various categories (prediction,
descriptor calculation, data access, validation, report generation) has been determined and is listed on the
Documentation page in the developers’ area (http://opentox.org/dev). However, it is possible that there may
be additions to this list in future. Where individual use cases need further functionalities, these will be
addressed directly by the component developer.

Required functionality for all OpenTox components
Prediction

create model not applicable in all cases (e.g. expert systems), but required for validation
Input training structures, training activities
Output prediction model

predict
Input chemical structure, prediction model
Output prediction, confidence, [supporting information]

Descriptor calculation

calculate
Input chemical structure, property
Output descriptor(s]

Data access

create
Input new data

update
Input modified data

query
Input chemical structure, endpoint
Output experimental measurement(s]

delete
Input 1D

Validation

validate
Input prediction_model, validation_method
Output validation statistics, [supporting information]

Report generation

create report
Input data, report type
Output report

Draft class diagram proposals that define interfaces for OpenTox components were created and are presented
in the Figures below for Descriptor, Modelling, Similarity, Data Access, Feature Selection and Molecule
Representation Components.

* Xk
* *
* *
* *

25 ol

http://opentox.org/dev

é
]

Deliverable Report

b
X

OpenTo

Figure 1: Descriptor Calculation Component

Joydussaquudisbuigainionnsqng

<<BOEIISFUT>>

TnEagIoadTIOs=2 |

JoydussaqiuudisbuidpayseH

<<B0EFIDIUT>>

10)du2s8gaouaINIdOBIN)INISANS

CLIDBITIAUT >

e, p—
_wpummoummujnUdHHMHd 3 TnsagIoldIIosag

J0ydusap ainyonnsang

<<SDBIISIUI>>

2125830

1 (195E1BQIESOUBISUT
Y ga03dTIDES>T038I23T 1 £303dTIoSSR) S103dTIOSS0S3 BN TED+

soeusjul-0aq

CLROBIISIUT >

v

J0ydussagquisyonsfud

FCEDBITIIAUTS>

TnsaygIoldTIosad |

AqTadoTapn AMHdUHMU"#Hdmmmuoamﬂuummﬂ.

(sxeqswered :sweied UT)sIislsweiedisb <<sIslsweIeds>>+
({<<sI81suE TR > sureTed UT) SIS1SWEIRIISS4
ATnssgI01dTIosa ! (STNSSTOH:STNOSTOW) S1BTASTES+
Butzaig :()uoTaiviusmsTdmrasby

loyduossaq

«LIDBFIIIUT>>

‘SSoUBINSS0 wINisI 3ybTwm poyisw SiETnoTED

cuyssd gsnl 1o

FWdHMb aTgnop B 3snl sg qou quybtw s3Tsnex

SUCTIRIUSWS[dWT IUSISIITP =S4BY UED
suyaTIcBTe pur swyitIiobre jusisIITp Ag pelETNoTED

=g ues gbog *B-s

‘enbtun jou axe ssuweu 103dTISES]

wauodwoa
uonepussaiday
a|nasjopy
ul pauyap
Auadoidpajeinojen

<<SDBIISIUTI>>

uole
wasaidayanaajopn
ul pauyap
uopiuyagainjead

CLIDBIIIAUT >

26

Value
<<interface®¥ ~ 7]

Parameter

+getName () : String
+getValue(): Value

<<interface>>

Parameters

+getIterator () :
+add (param:Paramster)

Iterator<Parameter>

<<interface>>

Classification

<<interface>>

Model

b — — - =

<<interface>>

Algorithm
sofar justa
markup interface
without methods

+learn(instance:<<DataSet>>)
+predict (instances:DataSet): ResultObject
+save (output: Stream)

+load(input:Stream)

+getName () : String

+setName (name: String)

+<<Parameters>> getParamsters ()
+setParameters (params:<<Parameters>>}
+<<hlgorithm>> getAlgorithm()
+setilgorithm (algorithm:Algorithm)

<<interface>>

Prediction

Deliverable Report

<<interface>>

An example of
classification
mode!

<<interface>>

KNN classifier
An example of a
classification
model

<<interface>>

Linear regression
An example of
predictive model

<<interface>>

SVM

<

an example of a
predictive madel

<<interface>>

Hierarchical clustering

<<interface>>

Clustering

+cluster (algorithm:Algorithm, instances:DataSet,
params:Parameters)

PredictedProperty

<—|

1 <<interface>>
1 - ; prT—— — Probability based clustering
. 1 \ PerformanceMeasures
- ! \ . == to be defined
<<interface>>
1 1 ! T T
Models | y | lftoString(): String <<interface>>
| . .
Ggetlterator () : iterator<Model> PP TE———— <<interface>>| Density based clustering
Dataset = - - {1 ResultObject| _:
defined in DB ! TO BE defined _
component] <<interface>>
! | ClusteringResult <<interface>>
TO BE defined | e .
: e Partitioning based clustering
ResultObject should provide means 1 T
to store/access predicted properties 1 1
Exact interface to be defined 1 1
V :_ - <<<<interface>>>>
<<interface>> — Graph based clustering

Y

<<interface>>

CalculatedProperty

27

<<interface>>

ClusterMembership

ClusteringResult

to provide means to stores/access
predicted cluster membership
exact interface to be defined

f”

-
—

OpenTox

e
——

Figure 3: Similarity Component

Deliverable Report

: <<interfaces= i
<<interface== Dataset -e:-:lntlerfacIE:-:-
= Molecule

Algorithm defined in DB

defined in component

Meodelling A

component I

A I

7 T '

=<interfaces=
Similarity

+getName(): String

+calculatePairwiseSimilarity (moleculel:Molecule
molecule2:Molecule): double

I}.+calcu1.ateSetSimilarityEdata&.et:Dataf.etll: double ?

+calculateSetSimilarity (molecule: Molecule, . |))
dataset:Dataset): SimilarityMatrix

<<interfaces=
SimilarityMatrix

+getSimilarity(): Similarity
+getimolecule: Molecule, molecule: Molecule): double

28 * 5 *

-
%h
e

=
OpenTox =

Figure 4: Data Access Component

Deliverable Report

<<interface>> <<interface>>

ModelQuery ModellDQuery

<<interface»>
SubstructureQuery
specifies
<<interface>> subs";rucl‘ure
search criteria
DataSet <<interface>>
A datasetis
defined by its Query
name (should be </
unique) definition of a
set of molecules search query
and properties <<interface>> <<interface>>
(features) +<<Parameters>> getparameters () MoleculelDQuery
(in : Pau specifies search search molecules
*size(): int criteria to q_ by unique id
+iterator(): iterator<Molecule> search molecules [
+<<Dataset>> join (anotherdataset:<<Dataset>>) inthe data
+getName () : String storage
+2c tName (name :String)
+<<Features>> getFeatures ()
+setFeatures (features:Features) <<interface>>
+<<Dataset>> search (query:Query) FeaturesQuery
specifies search
criteria,
related to
features (e.g.
<<interface>> MolWeight <300)
DB-Interface <<interface>>
DataSetQuery
[+<<Result>> load (guery:Quexy) specifies search
criteria for
datasets
<<interface>>
MoleculeDatasetQuery
—T> To retrieve
molecules for a
given dataset
<<interface>>
1 PropertyQuery
<<interfacer> maloae
DBModelinterface properties <<interface>>
DatasetiDQuery
+<<Model>> loadModel (modelQuery:ModelIDQuery) search datasat
+loadModels (modelQuery:ModelQuery) : Models by unique ID
+storeModel (model:Model, dataset:DataSet,date:Date): String
+loadprediction (predictionID:String,): String[]?
not clear, to be <<interface>>
discussed it
s use Fteaturel:)cti‘gﬂa EonQuery
PredictedPropert creria
° . feature
+storePrediction (model:Model, datasstID:DataSet, performanceMeasurss:PerformanceMeasurss,date:Date): String 2 (descriptors,
not dlear, to be properties)
discussed names , etc.
perhaps to use

PredictedPropert
es

<<interface>>

DBMolecule

+<<Molecule>> loadMolecule (molQuery:MolIDQuery)

+<<DataSet>> loadMolecules (molQuery:MoleculeQuery)

+storeMolecules (molecules:DataSet) : String?

+updateMolecules (molecule:Molecule, features:FeatureDefinitionQuery)

update values

for Molecule,

defined by the

second parameter

+<<Features>> getValuesForMolecules (molQuery:MoleculeQuery, FeatureDefinit ¥)
should it retur

Features or

DataSet ?

+loadSelectedFeatures (datasetID: String,algorithm: String, params:String[]): Stringl]

not clear, to be

discussed

+storeSelectedFeatures (datasetID: String, algorithm: String, featureIDs:String[],date:Date, params:String (1)
not clear, to be

specffes search o 1" quey by uniaue
citeria to model id

search models in
data storage

Substructure methods from the originmal proposal are removed,

since now Substructures are considered as properties of specifiv type.

The operations could be performed by the relevant methods,

dealing with Features.

TO DO - encapsulate substructure related operations in a descendant interface

+loadPrediction (predictionID:String,): String[]
+storePrediction (modelID:String, datasstID:String, performanceMeasures:String[],date:Date): String
+loadMolecule (molID:String[]) : Molecule

+loadMolecules (molID:String([]) : Molecule(]
+storeMolecules (mols:Molecule[]) : String

+updateMolecules (molID: String[], values:Molecule[])
+getvaluesforMolecules (molID:String|],descriptors:sering[]) : Molecule[]

+getValuesForMolecules (datasetID: String, descriptors: String[]) : Molecule[]
+loadSelectedFeatures (datasstID:String, algorithm: String, params:String(]) : String(]
+storeSelectedFeatures (datasstID: String, algorithm:String, featureIDa:String[],date:Date, params:String[])
+loadsubst ructures (molID:String, algorithm:String, params:String[]): Substructure[]
+storesubstructures (molID:String, algorithm: String, substructures:Substructure], params:String[])
+loadSetSubstructures (datasetID:String, algorithn: String, params:String[]) : Substructure(]

+storeSetSubstructures (datasetID:String, algorithm:String, substruct :Subst [1,date:Dats, :String[])
i i tring,matrix:double[]1[])

tring): double[][]

+loadSimilarityMatrix (molID:String[], sinilarityleasure

discussed
<<interface>>
DB-Interface
The original
proposal by TUM
here for
comparison and
discussion
+getNameOfStoredDatasets () : Stringl]
+loadModel (modelID: String) : Model
+loadModels() : Model(]
+storeModel (model :Model, algorithm:String,datasetID:String, date: Date,params:String[],performanceMeasures:String[]): String

29

Please not this is currently incomplete and needs to be auscusseh

-
———_)
E—0

\-‘_-_?
OPenTOX = Deliverable Report

Figure 5: Feature Selection Component

<<interface>>
<<interface>> PCA

Algorithm F‘riﬂmpa\I

MESQSM [== 3 <<interface>> . EE;TQ’E.Z.ES"
component ! Unsupervised Feature selection

! <<interface>>

FS-interface

T —— r — q+selectFeatures (algorithm:Algorithm,dataset:Dataset) : Features
Dataset b — q+projectFS(instances:Dataset, features:Features): Dataset
1
DefinedinDB =< —
component 1
! -
1 <<interface>> <t
1 Supervised Feature Selection <<interface>>
<<interface>> 1 WrapperFs
Features |==-'! Wrapper methods
* X %
* *
* *
* *

30

-
—

OpenTox =

f'l

e —
E—

Figure 6: Molecule Representation

<<interface>>

FeatureDefinition

+getName () : String
+getReference(): String
+setName (String)
+setReference (String)

<<interface>>

Feature<Value>
holds the value
for particular
molecule
property . e.g.
MolWeight=100

+<<FeatureDefinition>»> getName (}
+setName (name: FeatureDefinition)
+setValue (name:String, value:Value) : void
+getValue (name:String) () : Value

<<interface>>

Features

+getlterator(): Iterator<Feature>
+getFeature (name:String): Featurs
+setFeature (name:String, feature:Feature)

<<interface>>

Molecule
Structure of the
molecule can be

yet another
property (or set
of properties,
if consifering
conformers), or
we could have a
predefined
method as
getStructure()

+getID(): MolID
+32tID(id:MolID)

+getFeatures () : Features
+aetFeatures (features:Features)

] il
1 Value:,

Deliverable Report

Cbject to represent properties — fragments,
fingerprints, physchem, topodescriptors
can be subclasses of properties

Value
<<interface>>" T 7

-------- b
! value : Number,

Calculated property

<<interfacer>

Measured property

To encapsulate

observed values,

here we need a
link to WP3
Ontology

31

<<interface>>
PhysicochemicalProperty
TODO-dowe
need specific
methods?

== === ======== Ll
Value:Substructure,

<<interface»>» " " T TTTTTTT7

SubstructgreProperty
n

implementation
of Feature
interface,
representing
substructure
related property

T === ======== i
Value:Substructure,

<<interface>>
SubstructureFi ngerprint
Fragment base
fingerprint

!Value:Bitset
<<interfaceb® " "[~""""

HashedFingerprint

Bit hashed
fingerprint

_ valus:inu

<<interfade>> " T 77

InteqerP roperty
C

ass to store

counters,
substructure
occurences. etc.

._

OpenTgx =

Deliverable Report

Figure 7: OpenTox Components and InterActions

$5808433UT B1EIND1ED PUB (3poN AU} JusualdUT pnoys Jusuoduod 13pou

UOT}ETN31ED AU B 53B81D 83E1N31E0/TINT15POU 1S0d
18poU MaU B 33880 /TanT3pou 1504
s3] duexg

wo1pard 54 Jo woELSAIda 1 © 330)
vorzeueseadau Lux :()1ab4]
Dafgo ve ioj uoopaid mou o wan)

(dws0r 2ume a3 ‘we3sds adxa 63) sijaweied pauyapaid UIIN [BRow € 238313

s1qenene |
uoTyejuasaldal apou Lwx :()3}ab4]

23n0sa) 13pou (|uxX:|apou)}sod+
B1Ep BUIIE] Wl 3P oW &)8343]
a0.n0sa4 1apou : (1ux:suajauesed - uxierep Bututesy)ysods

a3.nosa. uoToTpald i (Luxi128[qo“a2un0seu i |apou) 150dt]

sa
e ‘3poLr & pue (33| 0l '6°3) 133(q0 UL SPIA SUCGEINYE3 JO PLTY [[2 O} SSBP LB Y

15 ‘si0xduds3p Iej3 0w 'SaMadard X0y 55 uimar

uopeynojed

SUORED2BOE “SUOPULOJSUES 'SUORE,M[E3 ULioyr3d 1B SULALOB(E Jo PUB [10J SSE JUIU3Y

1P apow U STIRIa

1apon

yodBES ABU B 31BEJD YDE8S/TIN 2SEqElep 1SOd
Ailue eseqeiep Asu e 21eald /1dn"eseqelep 150d
‘s 1duex3

'$9331UT 42JReS pUE aseqelep BYl LUSWSIdUT PINoys 1UBUOOUOD aseqelEp ¥

(Qux:sis3auesed oueas patyT
s324n0s34 40 UOT30R1100

UoJEas AsU oy 3nossu :(Lux:susjsueded youe

()21213p+|
12ig0 y21p3s Bupsixa ue Aypows|

pouj pnd+]

53L3UD 35PqRIEP I0) SIUNOSI1IO UGIY03 B SB SIS PIR3S UMy |

()136+|

193/q0 ypieas mau & 3jeasd|

as) 3500+

B
spo> snyess :()a3ataps]

Paigo mou o 3j0aso]

193[q0 mau YL Jog s2anosas : (Luxi30a[qo Mau)1sods]

pafgo Bupsxa ue Aypou|

apod smie3s : (Luxi1oalqo patsrpom)ind+

s3ynsar oepyen “sanpnsqns Sned|

amenAuaderd sarmanns sepsjow §'a 51330 10 53dA) snouea Joj suoeluasaidal jwx suimar|
19300 elep & 4o UoTielussadded LUK :()1abt

4aieas oseaerea
ysseas

Spoy)au 35eqLIEp OMYD PIEPUE)S
sseqejeg

uonepiien wau e s1ea13)

2.N0534 UOTIEPTIEA | (1UXi185 159} {UXi10S BUTUTE.)'324n055. i13pou) 150d+facz ~ — | aunosas uOT3EpTIEA : (Jux:eyep’soinossd i apou) 350+

wopepyjea mau @ 3j0313|

195 1591 |eUIaIX3

A2 plogy

X 3pd 1R '3} 10U PRSP 4] U1 0G5 247 DAL A
Jodau 1 ()136+
e1ep jux oy uodas © 21ear)

30de0 Jog soanosss :(1ewdoy indino’ Lux:e3ep)1sods]

uopzessush podey

10ULIOY Juix Ul SYS21 UOREPIEA 120

s11nssd uoTiepTieA ()18b+]

spogaw

uonepijea

snopien

e1ep wje1qo o) sse)> ensqy

ssadoe ejeg

apod snyeys

103lq0 Aau ayy oy adunosas :(1ux:12alqo mau)3sods|

50n0sas_alg 4o uoTiejuasaldas ux :()3ab4]

a2mos21 & 212020
3pos smeys :()a3a]epH]
P3igo mau e 23e313)

Polgo bunsia ue Aypou
(uux:3alqo patyTpou)nds]

Amiqepeas

uauodwos

120139 Joy a0 U33q 3ABY (SUonelado 212/30And Aemied pUE) SUONISlE? LD SUOREIAD

32

-
%h
e

\-‘_-_?
OPenTOX = Deliverable Report

Furthermore it was proposed to use a Representational State Transfer (REST) architecture for the
communication between components. Details of this are shown in Appendix B.

These propositions are currently the subject of further discussions and revisions. At the half year meeting in
February it was decided to stabilize the interface definitions first and subsequently to make decisions on the
web service architecture.

Conclusions

Initial requirements, standards and APIs for the OpenTox framework were defined and published in the
developer area of the OpenTox developer website (http://www.opentox.org/dev).

A clear common understanding and definition of the OpenTox Framework has been achieved and initial
components documented. Preliminary proposals on interfaces and web services - which are currently the
subject of further evaluation and testing - have been documented in detail.

At present there are no major problems within Work Package 1 that inhibit the progress of the project.

Appendix A: Use Cases Questionnaire with Summary of Responses

Appendix B: Representational State Transfer Architecture

33 * 5 *

http://www.opentox.org/dev

S S
OpenTox = Appendix A
OpenTox: Questions for Use Cases & Number of Responses

1a. What type of institution do you represent?
Industry 7
Government 0
Academia 0

Name of Institution (optional)

1b. What is the institution’s main business?

Food industry 0
Pharma industry 2
Suppliers of industrial chemicals 1
Other... 4

(type in the gray box)

2. For what purpose do you need to predict/estimate toxicity of chemicals?

(check all that apply)

early candidate screening 5
high throughput screening 1
regulatory submissions, 5
research (toxicological mechanisms...), 5
risk assessment, 3
prioritisation of biological tests 5
Other... 1

(type in the gray box)

3. Who does the prediction measurement/estimation?

trained toxicologist 5
bioinformatician 0
lab technician 1

computational chemist/modeler 3
Other...

(type in the gray box)

SEVENTH FRAMEWORK 2 * gk
PROGRAMME

-
%h
e

=
OPenTox = Appendix A

4. How are toxicity data obtained currently?
experimental animal tests 5
QSAR 4
read across 4
Other 3

(type in the gray box)

5. What methods does your institution use?

Experimental testing 5

TopKat 1
Derek 3
ADAPT 1
Codessa 0
Other... 4

(type in the gray box)

6. What level of detail do you need for individual predictions?

just active/inactive predictions 3

detailed information how the prediction was obtained, 5
please explain... 5

(type in the gray box)

7. For which types of compounds would you use a program such as OpenTox?

pharmaceuticals 2
industrial chemicals 4
cosmetics 2
food additives 1
Other... 3

(type in the gray box)

-
%h
e

OpenTox

—
o

Appendix A

8. What are the most important endpoints?

please describe the purpose e.g. a regulatory endpoint (please specify which one), human adverse effects
(which one, do you have human data, what would be suitable animal/in vitro models) for general risk
assessment, ecotoxicological effects

6 responses received and are available for view within the partner area of the website.

9. Quantitative predictions?

Yes/No decisions are sufficient 3
Quantitative predictions are needed 6
Comments: 5

(type in the gray box)

10. Types of end-points needed

Single endpoints 4
Activity profiles 4
Comments: 4

(type in the gray box)

11. Do you need to be able to create your own prediction models
Yes 7 No O
If yes, do you have a preference for certain methods or algorithms? 4

(type in the gray box)

12. Maximum number of compounds processed per day/week/month
per (type in the gray box)
3 per month - 1 million per week

Typical number of compounds processed: per (type in the gray box)

13. Preferred computer platform(s) for (Q)SAR etc. (if applicable)
Linux 2

Windows desktop

Macintosh desktop

5
0
Windows laptop 3
Macintosh laptop 0

0

Other... (type in the gray box)

* Xk
* *
* *
— — * *
SEVENTH EWORK
PROGRAMM

==

OpenT6X = Appendix A

14. Any restrictions from corporate IT policies

No corporate IT restrictions 2
Must be via client-server on corporate intranet 4
Must be standalone and not send data over the internet 2
Other... 3

(type in the gray box)

15. What level of in-house experience in the use and application of QSAR tools is available?
none

limited 0
moderate 5
expert 4

Please explain with examples... 4

(type in the gray box)

16. What level of in-house experience in the development of QSAR models is available?

none 0
limited 2
moderate 1
expert 3

Please explain with examples... 3

(type in the gray box)

17. What do see as the benefits and disadvantages of QSAR methods for toxicity assessment (please list)
Benefits/advantages.... 5

(type in the gray box)
Disadvantages.... 5

(type in the gray box)

18. What you see as the benefits and disadvantages of other non-testing methods for toxicity assessment
(please list)

Benefits/advantages.... 2
(type in the gray box)
Disadvantages.... 1

(type in the gray box)

* X x
* *
* *
— — * *
SEVEN ORK

-
—

OpenTox =

f'l

e —
E—

Appendix A

19. What you see as the benefits and disadvantages of experimental testing methods for toxicity assessment
(please list)

Benefits/advantages.... 4
(type in the gray box)
Disadvantages.... 4

(type in the gray box)

20. What features/functionality/culture would be necessary to encourage wider use of QSAR for
toxicity assessment

please list and explain... 5

(type in the gray box)

21. Which workflow systems do you currently use (if any)?
None 0
Pipeline Pilot 1

Other 2 (type in the gray box)

2. Which workflow systems would you wish to use with OpenTox?

None |:|
Pipeline Pilot 2

Other... 1 (type in the gray box)

23. Which QSAR models and formats would you want to import into OpenTox?

Models: (type in the gray box) Formats: 1

24. What features and capabilities in OpenTox (assuming you could specify them) would make you want to use
OpenTox over your existing methods, or in conjunction with them?

Please specify: 1 (type in the gray box)

=
OpenTOX = Appendix B

Representational State Transfer Architecture

WP1 and the REST

API proposal
19/A

OpenT;;? m

&)
REST - A software architecture style,

not a framework, not a protocol

+ Resource oriented

— Every object (resource) is named and addressable (by http URL)

— E.g. http://opentox.org/algorithm/linearregression/LR1 or
http: / /opentox.org/dataset/ISSCAN/molecule/100

» HTTP is the transport protocol
» Operations, supported by HTTP

- GET (retrieve the object under specified URL)
- PUT (create a new object and PUT in under specified URL)
— POST (create/update a new object

DELETE (delete the object)

All operations, except POST should be safe (no side effects) and idempotent
(same effect if executed multiple times)

» Operations NOT supported by HTTP
— Everything else , e.g. http://opentox.org/method?smiles=CCC
— Implemented by overloaded POST, considered violation of RESTfull principles

OpenTox

REST pro and cons

* Addressable resources
— Resource naming is a key element of every network technology
— Naming resources as http URLs is a reasonable choice for a web application

— Not unique across Web applications, e.g. http://opentox.org/molecule/CAS/50-00-0
and http://ambit.sourceforge. net/molecule/CAS/50-00-0

e Simpler technology? So far, may be ... is HTTP easy? Read the corresponding RFCs.

* Versioning - REST publications recommend to version REST services
http://opentox.org/restapp/toxtree/v1.51/etc

“Even a well-connected service might need to be versioned. Sometimes a rewrite
of the service changes the meaning of the representations, and all the clients
break, even ones that understood the earlier semantic cues. When in doubt,
version your service.” RESTFull Web Services book by Leonard Richardson and Sam Ruby

* Performance

— Same as for web services, although the options for multiple representations might
help in some cases. No direct support for asynchronous communication and

tr@.sq;g?gr;s(there are workarounds) -

OpenTox :,

)

REST pro and cons

* Service availability
— REST style URLs within an application (recommendation to be well-connected)
— Relies on search engines outside of the single web application

» Security
— Relies on HTTP security and SSL
— No message level security

» Design of process-oriented, brokered distributed services

— No support. This is where “Big” Web services shine

— No support for workflow oriented solutions like BPEL (orchestrating Web services)
* Implementations

— Ruby (Ruby on Rails), Python (Django), PHP (Cake PHP)

— Java - Restlet, Axis2 (if REST is enabled, the Axis2 server will act as both a REST endpoint and a SOAP
endpoint. When a message is received, if the content type is text/xml and if the SOAPAction Header is
missing, then the message is treated as a RESTful Message, if not it is treated as a usual SOAP Message)
Jersey - JAX-RS (JSR 311) Reference Implementation for building RESTful Web services

OpenT:;? :

SEVENTH FRAMEWORK
PROGRAMME

Appendix B

——

OpenTox

fll

—
—

Appendix B

Simpler or Suitable technology?

* |It’s more important whether the technology is suitable for the
problem, rather than being easier from the first sight

» REST seems to be a good fit to a single RESTfull application and less
to complex solutions, coordinating multiple independent parties

* This seems fine for OpenTox, provided we seek no message
level security and coordination between multiple (future)
“OpenTox” like applications

OpenT;;?

A proposal for OpenTox REST services

* Follow strict RESTfull style (GET,PUT,DELETE,POST only)
» Define when/how to use HTTP Status codes

» Use XML as the mandatory underlying format. This will help if we need to provide
interoperability with SOAP web service for some reason in future. Ability to validate the schema is
also a plus (how do you verify that JSON representation complies to the agreed one?)

* If other (optional) formats to be supported, use HTTP Allow/Accept Headers to
negotiate

» Define XML schema for each type of resource object (e.g. dataset, model, feature
selection) and each type of HTTP operation

¢ Define resources and their names (URLs) within OpenTox application
e.g. /models/fmodel id}/dataset/{dataset id}/predict
» Define interfaces in language independent manner (e.g. UML)
» Translate UML interface definitions into few languages e.g. Java and Ruby
» Create reference implementation (classes) in e.g. Java and Ruby
+ Implement problem specific classes based on reference implementation

OpenT:;?

SEVENTH FRAMEWORK * 5k
PROGRAMME

=
OpenTOX = Appendix B

OpenTox Components the REST way

» Start simple - a collection of Datasets
» /datasets
Everything is a resource with an URL!

get Retrieve list of all datasets available
put Add a new dataset and make it accessible under new
URL

/datasets/{newdataset_id}

post Create a new dataset and return its representation
Or update a dataset?

delete Delete all datasets

OpenTox = ﬂ

OpenTox Components the REST way

» A dataset: /datasets/{dataset_id}
* e.g. /datasets/ISSCAN

get Retrieve the representation of the dataset

put Create a new entry (a molecule) and make it accessible a
new URL
/datasets/ISSCAN/molecules/1

post Create a new entry (a molecule) and return its
representation

delete Delete all entries in the dataset

OpenT;;?

SEVENTH FRAMEWORK
PROGRAMME

=
OpenTOX = Appendix B

OpenTox Components the REST way

» A dataset is a collection of molecules
/datasets/{dataset_id}/molecules

get Retrieve list of all substances from this dataset
put Add a new substance and make it accessible under new
%{;- tasets/{dataset_id}/molecules/{newsubstance_id}
post Create a new substance and return its representation
delete Delete all substances
-

OpenTox

OpenTox Components the REST way

» A molecule
/datasets/{dataset_id}/molecule/{substance_id}

get Retrieve the representation of the molecule

put Update the representation of the molecule under its
URL datasets/{dataset_id}/molecule/1

post ?

delete Delete the molecule

OpenT:;? “

SEVENTH FRAMEWORK
PROGRAMME

=
OpenTOX = Appendix B

OpenTox Components the REST way

* A collection of Algorithms

/algorithms
get Retrieve list of all algorithms
put Add a new algorithm and make it accessible under new
l/Jz;{lléori thms/{algorithm_id}
post Create a new algorithm and return its representation
delete Delete all algorithms
o

OpenTox

OpenTox Components the REST way

» An Algorithm
/algorithms/{algorithm_id}

get Retrieve the representaion of this algorithm
put Insert/Replace the algorithm with this ID with new
content
post Replace the algorithm with this ID with new content
delete Delete the algorithm
OpenT:;?

SEVENTH FRAMEWORK
PROGRAMME

——

OpenTox

fll

—
—

Appendix B

OpenTox Components the REST way

* A Model
/models/{model_id}

get Retrieve the representaion of this model

put Insert/Replace the model with this ID with new content
post Replace the model with this ID with new content
delete Delete the model

OpenT:;?

More complex example

» Building a model with given parameters and with

given dataset
Jalgorithm/{algorithm_id}/parameters/{params_id}/datasets/{dataset_id}

get Return Model Representation if available, otherwise return
status code 404 NotFound
put Build the model with given parameters and dataset and

return a Model resource /model/{new_model _id}

post Build the model with given parameters and dataset and
return a Model representation

delete Cancel building a model?

OpenTox ¥

SE EWORK
PROGRAMM|

——

OpenTox

fll

—
—

Appendix B

More complex example

» Use a model to predict properties
/model/{model_id}/parameters/{params_id}/datasets/{dataset_id}

get Return ResultObject Representation if available, otherwise
return status code 404 NotFound

put Predict the dataset by the model with given parameters
and return a ResultObject resource
/results/{new_result_id}

post Predict the dataset by the model with given parameters
and return a ResultObject representation

delete Cancel prediction process?

OpenTg)}

What should a ResultObject consist of?

* The ResultObject

/results/{result_id}

— A dataset
/results/{result_id}/dataset/{dataset_id}

— Performance metrics
/results/{result_id}/performance/{metric_id}

Explanation

get Representation of the result object, if available
put N/A
post N/A
delete Delete the results
OpenT;;?

SE EWORK
PROGRAMM|

=
OpenTOX = Appendix B

OpenTox Components the REST way

» A REST API for all OpenTox Components can be
defined following the same reasoning as in the
above examples

« Common observations:

— REST works with named resources, therefore the
named object is a central type

— Define an interface for a named object and make all
classes implement it, including collections of objects

— The name (ID) should be a primary key for collections
of objects, all collections should implement findBylID()

mgﬂ}od
OpenTox

Common observations (cont.)

» Activities, that involve “actions” (e.g. Build a model or
Predict) can be refactored by introducing new resources
and exposing PUT or POST operation

/algorithm/{algorithm_id}/parameters/{params_id}/datasets/{datas
et_id}

* The result of such activities (e.g. a new Model) can be
exposed as resources (the REST way) or a representation
returned (mixed REST-RPC style)

— The REST way needs a persistence layer (store the Model or
Result on the server and access it later under
/models/{newmodel})

— The REST-RPC style is closer to classic Web services - the
regm‘sgl’tation is consumed by the client

OpenTox

SEVENTH FRAMEWORK
PROGRAMME

Common observations (cont.)

» Search results can follow the same pattern
/datasets/query/{query_id}/{parameters}
* Where query can be as simple as
/datasets/query/CAS/50-00-0
« Or a complex previously defined query, involving several criteria
» The result of a query is a collection of objects - e.g.
— Datasets
— Molecules
— Models
— Features
— Algorithms
* The result of a query is a collection of objects - and can be exposed

either as resources or returned as representations in the agreed
format.

OpenTox

OpenTox Case study the REST way

Start RESTing Getresult |

1)Select endpoint /endpoints /endpoints/carcinogenicity
from the list of all
available endpoints

2)Select a dataset /endpoints/carcinogenicity /datasets/ISSCAN
for this endpoint /dataset

3)Select an /algorithms /algorithm/NeuralNetwork
algorithm

4)Set parameters /algorithm/NeuralNetwork /algorithm/NeuralNetwork/
(add / delete /parameters parameters/param_set_1
parameters)

5)Build a model /algorithm/NeuralNetwork /model/model ISSCAN_NN

/parameters/param_set_1
/datasets/ISSCAN

OpenTox = ﬂ

SE EWORK
PROGRAMM|

10

Appendix B

——

OpenTox

fll

=

—

OpenTox Case study the REST way (cont.)

6)Validate a model

7)Yet another (external
) validation

8) Predict a new
dataset

9)Predict a single
molecule

9)Predict molecules
obtained as a search
result

UPEI"IIOX P

falgorithms/validation/LOO/
model/model_ISSCAN_NN/dat
aset/ISSCAN

Jalgorithms/validation/LOO/
model/model_ISSCAN _NN/dat
aset/another_dataset

/model/model_ISSCAN_NN/da
taset/new_dataset

/model/model_ISSCAN_NN/m
olecule/molecule_id

/model/model_ISSCAN_NN/qu
ery/amines

/results/ISSCAN_NN/validation
/1

/results/ISSCAN_NN/validation
/2

/results/ISSCAN_NN/prediction
/1

A resource or just
representation of the molecule
and /or predicted property

A resource or just

representation of the
molecules and /or predicted
property

IDEA’ Restlet feasibility study

+ https://ambit.svn.sourceforge.net/svnroot/ambit/branches/opentox

nl

* Modules

— dataaccess - interfaces only for data access component (not complete)
— modelling - interfaces only for modelling component (not complete)
— molecules - interfaces only for molecules representation component

(not complete)

— demo-impl - implementation classes for the three components above
(demo only, file based)

— opentox-demo - RESTLET web application, exposing resources , defined
in demo-impl (datasets and chemicals so far). Builds war file, suitable
for usage in servlet container as Tomcat.

OpenT;;?

11

Appendix B

==

IDEA’ Restlet feasibility study

» https://ambit.svn.sourceforge.net/svnroot/ambit/branches/opentox

* To compile use (Apache Maven needs to be installed)
>mvn clean install
» To run within Maven embedded Tomcat
>mvn tomcat:run
» This will launch Tomcat application server. The application will be
available at
http://localhost:8080/opentox-demo

— So far only http://localhost:8080/opentox-demo/dataset and
http://localhost:8080/opentox-demo/dataset/{dataset _id? URLs are functional.

* To deploy into external Tomcat server use either
>mvn tomcat:deploy

* or copy framework/opentox-demo/target/opentox-demo-0.0.1-
SNAPSHOT .war in your servlet container webapps directory.

OpenTox

IDEA’ Restlet feasibility study

* Implemented a (very) limited subset of OpenTox interfaces as Java
interfaces for data access, modelling and molecule representation
component

— All objects implement interface INamedValue<ID,Value> pair

— All collections are a collection of INamedValue<ID,Value> objects
— All collections implement findByID(ID id)

— This builds into three jar files for each component

* A demo implementation of (even more limited) subset of the

interfaces - Datasets and Molecules only
— This build another jar (demo-impl.jar), which depends on the first three
» REST functionality by http://www.restlet.org/
— REST application is packaged in a opentox-demo.war
— Could be easily deployed in a servlet container, or run standalone

« All versioning and dependencies managed by Maven

OpenT:)?P

SEVENTH FRAMEWORK
PROGRAMME

Appendix B

——

fll

—
—

OpenTOX Appendix B

IDEA’ Restlet feasibility study

* Domain model (interfaces and implementation) can be developed
and tested without tight coupling to a REST framework
* There might be multiple implementations of particular interfaces

» Easy integration and testing with a REST framework, even if the
production REST framework is different

— E.g. Component X can be developed and tested with Restlet library and then
easily integrated in a ROR application

OpenT:;?

IDEA’ Restlet feasibility study - conclusions

» “A client can only use PUT to create resources when it

can calculate the final URI of the new resource.”

RESTFull Web Services book by Leonard Richardson and Sam Ruby

» To follow fully the REST architecture style, the

application needs:

— A persistence layer to store exposed resources and resources,
resulting from a REST action
» Objects are network resources, not residing in client app memory!

e Objects ,created by PUT operations and need to be exposed as URLs,
not just returned in XML/YAML /JSON/etc format

* File or database implementations can peacefully coexist, the
resource is exposed only as http URL

OpenT;;?’

13

=
OpenTOX = Appendix B

IDEA’ Restlet feasibility study - conclusions

» To follow fully the REST architecture style, the
application needs:

An ontology for consistent naming of resources

* “The Resource Description Framework (http://www.w3.0rg/RDF/) is
a way of representing knowledge about resources. Resource here
means the same thing as in Resource- Oriented-Architecture: a
resource is anything important enough to have a URI. In RDF,
though, the URIs might not be http: URIs. Abstract URI schemas like
isbn: (for books) and urn: (for just about anything) are common.”

RESTFull Web Services book by Leonard Richardson and Sam Ruby

OpenT:;?

IDEA’ Restlet feasibility study - conclusions

* An ontology to REST ?
— Let’s decipher the example:

— /algorithms/validation/LOO/model/model_ISSCAN_NN/dataset/another_
dataset

— A LOOis a Validation (method)

— A Validation (method) is an Algorithm

— A “model _ISSCAN_NN” is a Model

— “another_dataset” is a Dataset

— The “LOO” method validates “model ISSCAN_NN”

— The “model_ISSCAN_NN” validation is performed by using
“another_dataset”

« Remember Ontology is defined as objects and their relations?
— REST without RDF is only half as bad as SOAP
httg:é/blog,s.sun.com/bblﬁsh/entrv/rest without_rdf _is_only

OpenTox

SEVE /ORK

14

——

OpenTox

fll

—
—

Appendix

IDEA’ Restlet feasibility study - conclusions

» Starting point for a XML schema
» Define name spaces for algorithms, models, datasets, molecules (reuse when
existing)
» Define a top level representation of a named object
<namespace:item id=“uniqueid”>

<namespace:content>
</namespace:content>

</namespace:item>
» Define a top level representation of a named collection
<namespace:collection id=“uniqueid”>

<namespace:item>
</namespace:item>

</namespace:collection>

OpenT;';?

IDEA’ Restlet feasibility study - conclusions

» Define flexible name-value placeholders , which could be interpreted or
ignored by various component implementation
<model:item id=“uniqueid”>
<model:content>
<model:properties>
<model:property name=“allmodelsproperty”>value</ model:property >
< model:property name=“toxtree_specificproperty”>value</ model: property >
< model:property name=*“lazar_specificproperty”>value</ model:property >
</ model:properties >
</model:content>
</model:item>

OpenT;';?

SEVENTH FRAMEWORK * 5k
PROGRAMME

