In Vitro to In Vivo Extrapolation in Predictive Toxicology

Harvey Clewell

The Hamner Institutes for Health Sciences Research Triangle Park, North Carolina, USA

The Traditional Role of Biokinetics: Relating Animal Doses to Equivalent Human Exposures

In the Future: Biokinetics Will Be **Necessary** to Relate the Nominal Concentration in an *In Vitro* Assay to the Equivalent *In Vivo* Human Exposure

In Vitro Toxicity Assays

* Quantitative In Vitro to In Vivo Extrapolation

Step-wise In Vitro Based Risk Evaluation Approach

QIVIVE Approach

QSAR/QSPR for QIVIVE

- Multiple methods available
 - Correlations
 - Physical Chemical Properties
 - Kow, Sw, Hb/g, pKa, permeability
 - partition coefficients
 - Fragment- or rule-based systems
 - metabolism (qualitative)
 - Derek/Meteor, OECD Toolbox
 - 3-D docking (some cyps)
- Limitation
 - Availability and quality of training data for the wide range of chemical property classes (particularly for "non-druglike" compounds)

Physico-Chemical Classification

Considerations for QIVIVE

Pharmacokinetic factors that affect *in vivo* toxicity but are not appropriately reflected in *in vitro* toxicity tests:

- Bioavailability
- Transport
- Protein binding
- Clearance
 - Metabolic
 - Renal
 - Biliary
 - Exhalation

In Vitro Metabolism

Kinetics

- Primary hepatocytes
- Tissue slices
- Microsomes, cytosol
- Recombinant cyps
- Organotypic cultures
- Identification of primary metabolites
 - QSAR (Meteor, Multicase)
 - GC/MS, LC/MS

Complications Due to Metabolism

- Metabolite could be responsible for toxicity
 - Toxicity would not be observed in test cells with low metabolic competence
- Circulating metabolite could be toxic in tissue other than liver
 - brain (trichlorethanol from chloral hydrate)
 - kidney (reactive thiol from glutathione conjugate)

Other Factors

- Urinary clearance
 - water soluble chemicals
 - based on glomerular filtration rate
 - Ignores active transport
- Ventilatory clearance
 - volatile chemicals
 - based on alveolar ventilation rate
- Poor absorption
 - Estimate bioavailability (e.g., Caco2)

Key Problem for QIVIVE

- Problem: Typically No Measurement of Free Chemical Concentration during *In Vitro* Assay
 - Nominal concentration (Dose/Volume) unacceptable for QIVIVE
- Possible Approach:
 - Measure media concentration
 - Determine binding in media vs. plasma
 - Estimate media:cell partition
 - Check mass balance with media and cell concentrations
- The only thing worse than no data is bad data

Processes Affecting Free Concentration

QIVIVE and Reverse Dosimetry for Interpreting *In Vitro* Assay Results

Comparison of *in vitro*-to-*in vivo* extrapolation results with estimates based on *in vivo* PK (Wetmore *et al.* 2012)

Chemical	In Vivo Derived	IVIVE Restrictive (fub)	IVIVE, Non-restrictive
	Css (µM)	Css (uM)	Css (uM)
2,4-dichlorophenoxyacetic acid	9.05-90.05	39.25	39.25
Bisphenol-A	< 0.13 ^d	0.35	0.06
Cacodylic acid	1.80	3.06	3.06
Carbaryl	0.03	0.04	0.03
Fenitrothion	0.03	17.91	0.10
Lindane	0.46	13.21	0.07
Oxytetracycline dihydrate	0.36	2.00	2.00
Parathion	0.17	24.63	0.14
Perfluorooctanoic acid	20,120 g	55.34 ^g	0.4 ^g
Picloram	0.27	57.63	0.37
Thiabendazole	0.45	13.76	13.76
Triclosan	2-10	1.56	0.01

Application: Defining Dosimetry in High Throughput Toxicity Screens

Results From Reverse Dosimetry Analysis The Same EC50 Does Not Imply the Same Exposure!

		Minimum EC50	Est Oral Equivalent	
Chemical	ToxCast Endpoint	or LEL (uM)	(mg/kg/day)	
Acetamiprid	BSK_BE3C_uPAR	1.481	0.384	
Atrazine	BSK_KF3CT_IP10	1.481	1.215	
Bromacil	BSK_BE3C_IP10	1.481	0.888	
Forchlorfenuron	BSK_BE3C_uPAR	1.481	1.277	
Metribuzin	BSK_hDFCGF_MMP1	1.481	6.577	
Isoxaflutole	BSK_hDFCGF_EGFR	1.481	1.209	
Dicrotophos	BSK_hDFCGF_PAI1	1.481	2.632	
Clothianidin	BSK_hDFCGF_EGFR /	1.481	7.580 🔨	
Diazoxon	BSK_KF3CT_IP10	1.481	0.266 🔨	$\langle \rangle$
Oxytetracycline	BSK_BE3C_IL1a	1.481	0.567	
2,4-D	BSK_BE3C_IL1a	1.481	1.389	
	Similar LEL Values	5		Different Equivaler

This Simple Implementation of IVIVE for HTS Has Demonstrated that Kinetics is Crucial (Rotroff *et al.* 2010)

IRAS/RIVM/Hamner Evaluation of In Vitro to In Vivo Extrapolation (IVIVE) Approaches

IRAS/RIVM/Hamner Evaluation of In Vitro to In Vivo Extrapolation (IVIVE) Approaches

QSAR Prediction of Metabolites

- The OECD Toolbox was able to correctly predict the primary metabolite responsible for the toxicity of 9 of the 12 chemicals investigated in this study where toxicity is due to a metabolite
- However, a number of other metabolites were also predicted, including many that have not been detected in vivo
- The prediction of nontoxic or low-yield metabolites for makes the process of investigating possible metabolite toxicity more difficult and time-consuming

IRAS/RIVM/Hamner Evaluation of In Vitro to In Vivo Extrapolation (IVIVE) Approaches

Comparison of Css estimates based on in vitro- and in vivo-based Clints

Experimental research to improve QIVIVE

In Vitro Liver Bioreactor for Metabolite Identification

Mass-Metasite: Enhanced metabolite identification with semi-automated software for structural elucidation

Microfluidic Human on a Chip

Requirements for in vitro based risk assessment

Characterization of free concentration in cell-based assays

- binding
- metabolism
- active transport

In vitro models

- concurrent intestinal absorption/metabolism
- dermal absorption
- blood/brain barrier
- hepatocyte clearance
- pathway/metabolite ID/kinetics (organotypic)
- renal clearance

Data collection to support QSPR modeling

- metabolite identification
- protein binding in cell-based assays
- tissue partitions (some classes of compounds)
- restricted vs unrestricted hepatic clearance
- metabolism rates
- gut absorption/metabolism (non-druglike cmpds)
- transporter substrates/renal clearance

QIVIVE case studies

- classes of physicochemical properties
- different metabolism pathways
- parent vs stable metabolite vs reactive metabolite
- portal of entry vs liver vs remote toxicity

Development of generic PBPK modeling platforms

26

- user friendly, open access
- database for physiological parameters
- inhalation, dermal, and oral exposure
- multiple parallel metabolic pathways

ALTEX 29, 1/12

"The difficulty lies, not in the new ideas, but in escaping from the old ones." John Maynard Keynes (1883-1946)

"This report, by its very length, defends itself against the risk of being read." Winston Churchill (1874-1965)

t⁴ Report*

A Roadmap for the Development of Alternative (Non-Animal) Methods for Systemic Toxicity Testing

David A. Basketter^{1,§}, Harvey Clewell^{2,§}, Ian Kimber^{3,§}, Annamaria Rossi^{4,§}, Bas Blaauboer⁵, Robert Burrier⁶, Mardas Daneshian⁷, Chantra Eskes⁸, Alan Goldberg⁹, Nina Hasiwa¹⁰, Sebastian Hoffmann¹¹, Joanna Jaworska¹², Thomas B. Knudsen¹³, Robert Landsiedel¹⁴, Marcel Leist¹⁵, Paul Locke⁹, Gavin Maxwell¹⁶, James McKim¹⁷, Emily A. McVey¹⁸, Gladys Ouédraogo¹⁹, Grace Patlewicz²⁰, Olavi Pelkonen²¹, Erwin Roggen²², Costanza Rovida²³, Irmela Ruhdel²⁴, Michael Schwarz²⁵, Andreas Schepky²⁶, Greet Schoeters²⁷, Nigel Skinner²⁸, Kerstin Trentz²⁹, Marian Turner³⁰, Philippe Vanparys³¹, James Yager³², Joanne Zurlo⁹, and Thomas Hartung^{33,§}