Visual Analysis of Chemical Space with Scaffold Hunter

Nils Kriege

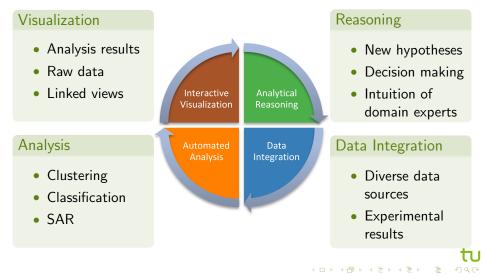
Dept. of Computer Science, TU Dortmund

OpenTox Euro, Mainz, 02. October 2013

τı

・ロト ・御ト ・注ト ・注

Chemical Space

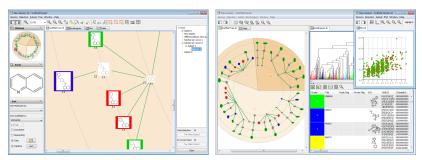

- Theoretical chemical space: $\sim 10^{62}$ molecules
- De-novo libraries: several hundreds of millions
- Commercially-available: 21 million molecules (ZINC)

Trend

- Increasing amount of available data (public or in-house)
- Need to systematically explore and analyze data to speed up drug discovery process

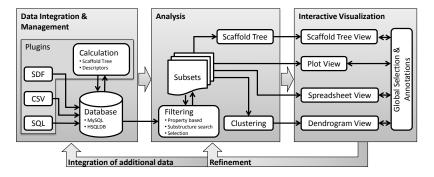
Cyclic Knowledge Discovery by Visual Analysis

Classical Approach: Raw data \rightarrow Analysis \rightarrow Visualization



Scaffold Hunter

• Java-based Open Source tool


Development started 2007, TU Dortmund

Goal:

- Import of data from a variety of sources
- Integrated visualization and analysis
- Interactive exploration in a systematic manner

Scaffold Hunter for Visual Analysis

- Facilitate cyclic knowledge discovery process
- Refinement of subsets, analysis parameters
- Integration of additional experimentally obtained data

Scaffold Tree: Concepts & Algorithms

- Hierarchical classification scheme based on core structures
- Rule-based parent scaffold selection
- Scaffolds as representatives for sets of similar molecules
- Virtual scaffolds without associated molecules

Algorithm

- For each molecule:
 - 1 Prune terminal side chains \rightarrow scaffold
 - 2 Successively remove rings \rightarrow unique parent scaffolds
- Merge multiple scaffolds
 → scaffold tree

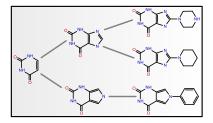
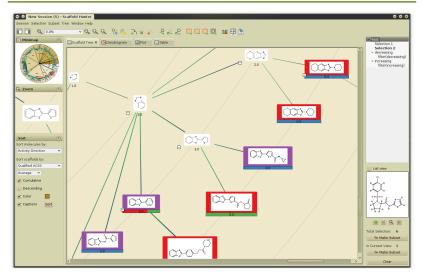
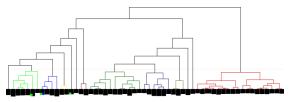



Figure: Branch of a scaffold tree

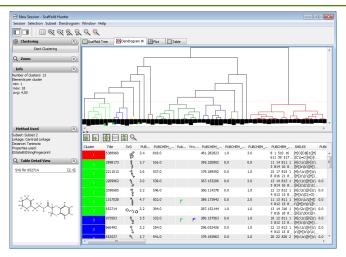
The Scaffold Tree - Visualization of the Scaffold Universe by Hierarchical Scaffold Classification Schuffenhauer, Ertl, Rogo, Wetzel, Koch, Waldmann; J. Chem. Inf. Model., 2007, 47, 47-58


Scaffold Tree: Visualization

- Details-on-demand: Scaffold depiction adapts to zoom level
- Property Mapping: Representation by visual attributes

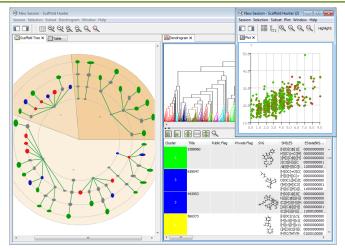
7

Hierarchical Clustering: Concepts & Algorithms


SAHN Clustering

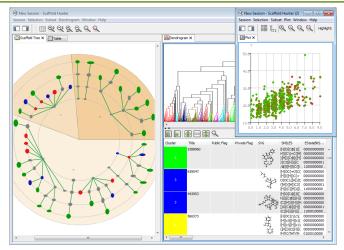
- Distance between molecules, e.g., Tanimoto & fingerprints
- Linkage: Distance between clusters, e.g., Average or Ward
- Algorithm:
 - 1 Start with singleton clusters
 - 2 Merge pairs of clusters with minimum distance until a single cluster is obtained

Heuristic SAHN Clustering


- Subquadratic running time in practice, low memory footprint
- Support for arbitrary metric distance measures

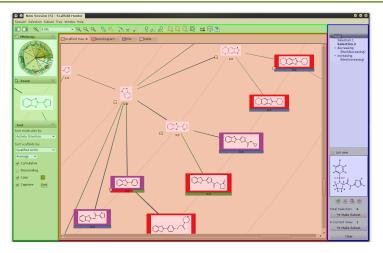
Hierarchical Clustering: Visualization

- Zoomable user interface with details-on-demand
- Cluster selection bar: Interactive refinement of clustering
- Table View: Embeddable synchronized spreadsheet


Plot View

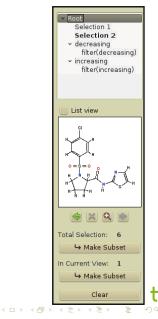
- 2D/3D scatter plot
- Mapping of attributes to axes, color, dot size etc.

◆ロト ◆部 ト ◆注 ト ◆注 ト


Plot View

- 2D/3D scatter plot
- Mapping of attributes to axes, color, dot size etc.

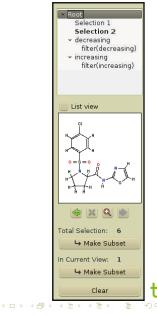
 \rightarrow Effective use requires intuitive linking of views!


Scaffold Hunter Main Window

- Red: Currently open views in tabs
- Green: View-specific tool- and sidebar
- Blue: Global subset and selection management

• Global selection:

- Synchronized selection over all views
- Selection browser for quick access



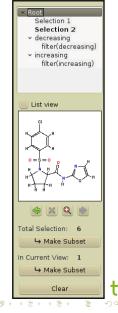
• Global selection:

- Synchronized selection over all views
- Selection browser for quick access

• Subset Management:

- Hierarchy of subsets
- Change underlying subset of view
- Multiple views on different subsets

12


• Global selection:

- Synchronized selection over all views
- Selection browser for quick access

• Subset Management:

- Hierarchy of subsets
- Change underlying subset of view
- Multiple views on different subsets
- Filtering: Selection, Property-based, SSS

🛞 Choose filterset			×
No Filterset Pyruvate Kinase Fi	Filterset Title: Pyruvate Kinase Filterset		
	PUBCHEM_XLOGP3	▼ >= ▼	3 🗘 📼
	PUBCHEM_CACTVS_TAUTO_COUNT	▼ is defined ▼	-
	SCPnoLinkerBonds	• >= •	1 📮 📼
	Choose property	•	
	Conjunctive 👻		Save
		Molecule count: 447 🛛 🖋 OK	Cancel

• Global selection:

- Synchronized selection over all views
- Selection browser for quick access

• Subset Management:

- Hierarchy of subsets
- Change underlying subset of view
- Multiple views on different subsets
- Filtering: Selection, Property-based, SSS
- Annotations: Tooltip, comments, ...

😣 Choose filterset			×
No Filterset Pyruvate Kinase Fi	Filterset Title: Pyruvate Kinase Filterset		
	PUBCHEM_XLOGP3	• >= •	3
	PUBCHEM_CACTVS_TAUTO_COUNT	✓ is defined ✓	-
	SCPnoLinkerBonds	• >= •]	1 🐳 📼
	Choose property	•	
	Conjunctive 👻		Save
		Molecule count: 447 🛛 🖋 OK	Cancel

Multiple Views & Tooltip

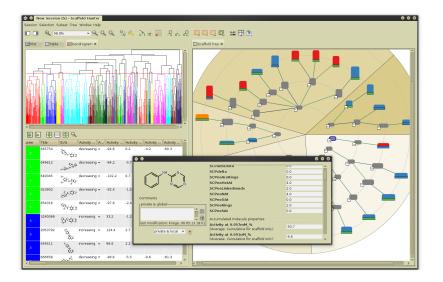
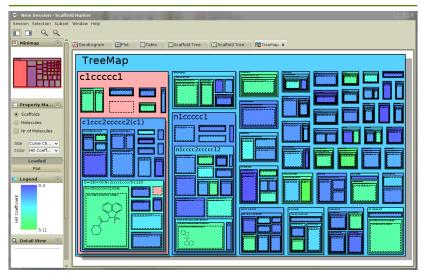


Figure: Split View: Dendrogram, Scaffold Tree & Tooltip

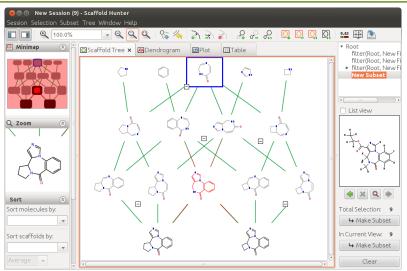
Realization & Technical Details

- Freely available under GNU GPL v3
- Implemented in Java for platform independent use
- Modular software architecture:
 - Seamless integration of novel views and analysis features
 - Plugin system for data sources and property calculation


Realization & Technical Details

- Freely available under GNU GPL v3
- Implemented in Java for platform independent use
- Modular software architecture:
 - Seamless integration of novel views and analysis features
 - Plugin system for data sources and property calculation

Toolkits & Database Support


- Chemistry Development Kit (CDK): Various cheminformatics tasks
- Piccolo2D: Zoomable user interfaces
- Batik: SVG support
- Hibernate: Object-relational mapping
- MySQL/HSQLDB: Back-end databases

Future Work: Scaffold TreeMaps

- Space-filling approach to visualize scaffold trees
- Google Summer of Code project 2013: Jeroen Lappenschaar

Future Work: Scaffold Networks

- Visualization of multiple parent scaffolds (Sugiyama layout)
- Dynamic filtering of networks

Conclusion

- Exploratory visual analysis of chemical compound databases
- Clustering and classification of molecular datasets
- Multiple complementary interconnected views

Conclusion

- Exploratory visual analysis of chemical compound databases
- Clustering and classification of molecular datasets
- Multiple complementary interconnected views

Development & Acknowledgements

- TU Dortmund, Prof. Mutzel: Nils Kriege, Till Schäfer
- University of Sydney: Dr. Karsten Klein
- GSoC 2013: Jeroen Lappenschaar
- Cooperation:
 - MPI for Molecular Physiology Dortmund (Prof. Waldmann)
 - Dr. Koch, Computational Molecular Design, TU Dortmund

