CheS-Mapper: New Developments

Martin Gütlein mguetlein@fdm.uni-freiburg.de

UNIVERSITÄT MAINZ

Andreas Karwath & Stefan Kramer

OpenTox Euro 2013, October 2

CheS-Mapper - Chemical Space Mapping and Visualization in 3D

- 3D viewer for small molecule datasets
- Published in Journal of Cheminformatics, March 2012, >6000 accesses in 18 months
- Project homepage: <u>http://ches-mapper.org</u>
- Open-source java software
- Uses: Jmol, CDK, WEKA, OpenBabel, R
- Compatible to OpenTox dataset services

```
😣 🗐 🗊 demo.smi - CheS-Mapper (v1.12.1)
```


😣 🗐 🔲 🛛 CheS-Mapper Wizard (v1.12.1)

<u>1. Load Dataset</u>

- 2. Create 3D Structures 🐺
- Extract Features
- 4. Cluster Dataset
- 5. Embed into 3D Space
- 6. Align Compounds

Load Datase	t <mark>(ste</mark> p	1 of	6)
-------------	-----------------------	------	----

Select a dataset from your file system for clustering, embedding and visualization.

Help

emo.smi - CheS-Mapper (v1.12.1) File Edit View Highlighting Help

Phosphoric acid	98					Dataset:		demo.	.smi		
Sulfuric acid	98.08			200	ζ.	Num comp	ounds:	10			
Nicotine	162.23			and the state of t	7	Cluster alg	orithm:	No Da	taset Cl	ustering	
Glucose	180.16				•	3D Embedo	ding:	Samm	ion 3D E	mbedder	r (R)
Citric acid	192.12					3D Embedo	ding Quality	y: excell	ent (CC	C: 1, r^2	: 0.99)
Caffeine	194.19						0	Com			
Lidocaine	234.34						⁰∽∽		npound		$c(\mathbf{o})$
Diazepam	284.74									00000	C(0)
ТНС	314.46						0 0		nas	5	
Sucrose	342.3							HBL		5	
								IOGP	,	-3.22	
								MR		35.74	
								HBA		6	
								HBA	2	6	
Superimpose								TPS	A	110.38	
								sbor	nds	12	
					\square	Glucose: 180	0.16	SMI	dbNAM	G lucose	9
								ator	ns	12	
		_ <u>1</u>				51		bon	ds	12	
								MW		180.16	
		1 and 1	and the second	a a construction of the second se				abo	nds	0	
		1			F	eature:	MW				
					V	/alues:	193.16 ±	83.94			
			• 1	<u></u>	0	Description:	Molecula	r Weight	filter (O	B Descri	ptor)
					L	Jsage:	Used for	clustering	g and/or	embedd	ling.
Embedo	ling	is based		- <u></u>	Ν	lissing values:	0				
on DC	docc	rintors		***		• 3					
ULLEC	uesc	riptors,				S.					
molecu	lar w	/eiaht is				Š 2					
		ad				8					
SE	elect	ed				6 1					
						#C					
-]	ø Wiref	rame 🛎 Balls & Stic	ks 🛎 Dots			0		200	250		
						100	150	200	250	300	350
							Gluc	ose Data	aset		

😣 🗩 💷 demo.smi - CheS-Mapper (v1.12.1)

File Edit View Highlighting Help

Citric acid	match
Glucose	match
Sucrose	match
Caffeine	no-match
Diazepam	no-match
Lidocaine	no-match
Nicotine	no-match
Phosphoric acid	no-match
Sulfuric acid	no-match
тнс	no-match

Superimpose

🔻 🔳 Label

Dataset:demo.smiNum compounds:10Cluster algorithm:No Dataset Clustering3D Embedding:Sammon 3D Embedder (R)3D Embedding Quality:good (CCC: 0.86, r^2: 0.7)

Same dataset, but embedding is based on structural fragments (MACCS list)

Feature:	OCO Smarts list: MACCS (OpenBabel MACCS)
Values:	7× no-match, 3× match
Description:	Structural Fragment, matched with Ope
Smarts:	[#8]~[#6]~[#8]
Usage:	Used for clustering and/or embedding.
Missing values:	0

Jmol

Quality of the 3D Embedding


```
😣 🖨 🗉 🛛 demo.smi - CheS-Mapper (v1.12.1)
```


COX-2 dataset

- 467 COX-2 Inhibitors
- Inhibitation of the enzyme Cyclooxygenase-2 (COX-2) is investigated in cancer studies
- Compounds are structurally very similar (docking dataset)
- Endpoint: $IC_{50} \mu Mol$ (half maximal inhibitory concentration)

Spline-Fitting with a Genetic Algorithm: A Method for Developing Classification Structure—Activity Relationships Jeffrey J. Sutherland, Lee A. O'Brien, and, and Donald F. Weaver Journal of Chemical Information and Computer Sciences 2003 43 (6), 1906-1915 OpenTox Euro 2013 - Martin Gütlein - CheS-Mapper

Sorting of features

Cluster Size	Cluster 3 77	Spe
logP	4.35 ±1.05	<u>Ω.</u>
MR	67.71 ±15.04	; ;
MW	246.39 ±76.69	Ω. /
TPSA	20.31 ±16.52	
HBA1	1 ±0.72	
HBA2	1 ±0.79	
DSSTox_CID	2080 ±447.85	
HBD	0 ±0.57	
LC50_mmol	0 ±0.09	
nF	0 ±0.23	

- Feature values are shown for the selected compound or cluster
- Features are sorted according to the p-value of
 - X² test for nominal features
 - ANOVA test for numerical features

The most ,important' features are listed first: the feature values of this compound/cluster differ the most from the complete dataset 😣 🗐 🗊 cox2.sdf - CheS-Mapper (v1.12.1)

😣 🔵 💿 🛛 cox2.sdf - CheS-Mapper (v1.12.1)


```
😣 🗐 🗊 cox2.sdf - CheS-Mapper (v1.12.1)
```


• KNIME:

- graphical workbench for data access, investigation and predictive analysis
- various extensions to process chemical data
- CheS-Mapper integration as visualization node

EPAFHM dataset

• EPAFHM:

- US Envrionmental Protection Agency (EPA) Fathead Minnow Acute Toxicity Database File
- 617 industrial organic chemicals
- Endpoint: LC50 mMol ((lethal) concentration that kills 50%)

Predicting modes of action from chemical structure: Acute toxicity in the fathed minnow (Pimephales promelas).

Russom, C.L., S.P. Bradbury, S.J. Broderius, D.E. Hammermeister, and R.A. Drummond (1997) Environmental Toxicology and Chemistry, 16(5): 948-967.

Feature: LC50 mmol

🖸 Wireframe 💭 Balls & Sticks 💭 Dots

Label

Cluster: Single cli Num compounds: 579 3D Alignement: No Clust LC50 mmol: [0; 917]

Dataset:

knime inj Num compounds: 579 Cluster algorithm: No Datas 3D Embedding: Sammon 3D Embedding Quality: good (r^

Compound:

9.67	1.Renzy	nyridinium	3.culfonato
9.07	I-Denzy	pynainian	3-sullonate

STRUCTURE_ChemicalType:	defined (
STRUCTURE_TestedForm	parent
STRUCTURE_Shown:	tested cl
TestSubstance_Chemica	1-Benzylr
TestSubstance_CASRN:	69723-9.
TestSubstance_Descripti	single ch
ChemicalNote:	zwitterior
STRUCTURE ChemicalNa	1-(pheny
STRUCTURE_Parent_SMIL	ClC(=CC
STRUCTURE Inchi:	InChi=1/

Fish-Toxicity is well correlated to **PC-descriptors** (used for embedding)

Feature: Description: Usage: Missing values: 0

LC50 mmol Included in Dataset NOT used for clustering and/or embed

Imol

More features

- Export clusters/compounds/features
- Export high-res images
- Access ChEMBL database
- Save and share embedding settings
- Data tables to browse through raw compound/feature/cluster data
- Command line interface
- Configurable highlight and view settings
 - Adjust highlight color gradient
 - Enable log highlighting
 - Switch between sphere and atom-color highlighting
 - ..

Quotes about CheS-Mapper

... a very niece piece of software.

Basil Hartzoulakis, PhD, Xention Ltd, Cambridge

You help to make me look like a genius to my bosses ... this is the only open source tool I know of that is usable by a regular bench chemist.

Kerry W. Fowler, Ph.D., Senior Scientist Kineta Inc, Seattle

CheS-Mapper has come in handy.

Kaushik Hatti, Vittal Mallya Scientific Research Foundation, Banagalore

I am very impressed by the ches-mapper software ... the tool is very effective to spot trends of a chemical group *Hiroshi Nara, Organic chemist, Japan*

thanks for the gorgeous ches-mapper.

Santi Villalba, University College Dublin

Many compliments because we have found that it is highly useful and well working.

Prof. Paola Gramatica, University of Insubria